首页 | 本学科首页   官方微博 | 高级检索  
     


Self-similar solutions for the dynamical condensation of a radiative gas layer
Authors:Kazunari Iwasaki   Toru Tsuribe
Affiliation:Department of Earth and Space Science, Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan
Abstract:A new self-similar solution describing the dynamical condensation of a radiative gas is investigated under a plane-parallel geometry. The dynamical condensation is caused by thermal instability. The solution is applicable to generic flow with a net cooling rate per unit volume and time  ∝ρ2 T α  , where  ρ,  T   and α are the density, temperature and a free parameter, respectively. Given α, a family of self-similar solutions with one parameter η is found in which the central density and pressure evolve as follows:  ρ( x = 0, t ) ∝ ( t c− t )−η/(2−α)  and   P ( x = 0, t ) ∝ ( t c− t )(1−η)/(1−α)  , where t c is the epoch at which the central density becomes infinite. For  η∼ 0  the solution describes the isochoric mode, whereas for  η∼ 1  the solution describes the isobaric mode. The self-similar solutions exist in the range between the two limits; that is, for  0 < η < 1  . No self-similar solution is found for  α > 1  . We compare the obtained self-similar solutions with the results of one-dimensional hydrodynamical simulations. In a converging flow, the results of the numerical simulations agree well with the self-similar solutions in the high-density limit. Our self-similar solutions are applicable to the formation of interstellar clouds (H  i clouds and molecular clouds) by thermal instability.
Keywords:hydrodynamics    instabilities    ISM: structure
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号