首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Using a One-and-a-Half Order Closure Model of the Atmospheric Boundary Layer for Surface Flux Footprint Estimation
Authors:Andrey Sogachev  Jon Lloyd
Institution:(1) Max Planck Institute for Biogeochemistry, Postfach 10 01 64, 07701 Jena, Germany;(2) Department of Physical Sciences, University of Helsinki, P.O. Box 64, FIN-00014, Finland
Abstract:A knowledge of the distribution of the contribution of upwind sources to measurements of vertical scalar flux densities is important for the correct interpretation of eddy covariance data. Several approaches have been developed to estimate this so-called footprint function. Here a new approach based on the ensemble-averaged Navier—Stokes equations is presented. Comparisons of numerical results using this approach with results from other studies under a range of environmental conditions show that the model predictions are robust. Moreover, the approach outlined here has the advantage of a potential wide applicability, due to an ability to take into account the heterogeneous nature of underlying surfaces. For example, the model showed that any variations in surface drag, such as must occur in real life heterogeneous canopies, can exert a marked influence of the shape and extent of flux footprints. Indeed, it seems likely that under such circumstances, estimates of surface fluxes will be weighted towards areas of highest foliage density (and therefore quite likely higher photosynthetic rates) close to the measurement sensor. Three-dimensional footprints during the day and night were also determined for a mixed coniferous forest in european Russia. A marked asymmetry of the footprint in the crosswind direction was observed, this being especially pronounced for non-uniform plant distributions involving vegetation types with different morphological and physiological properties. The model also found that, other things being equal, the footprint peak for forest soil respiration is typically over twice the distance from the above canopy measurement sensor compared to that for canopy photosynthesis. This result has important consequences for the interpretation of annual ecosystem carbon balances by the eddy covariance method.
Keywords:Ensemble-averaged model  Flux footprint prediction  Forest  Heterogeneous canopies
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号