首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Holocene vegetation and climate history at Haligu on the Jade Dragon Snow Mountain, Yunnan, SW China
Authors:Xiao-Yan Song  Yi-Feng Yao  A H Wortley  K N Paudayal  Shao-Hua Yang  Cheng-Sen Li  S Blackmore
Institution:1. State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Xiangshan, 100093, Beijing, People’s Republic of China
2. Shanxi Agricultural University, Taigu, 030801, People’s Republic of China
3. Royal Botanic Garden Edinburgh, 20a Inverleith Row, Edinburgh, EH3 5LR, UK
4. Central Department of Geology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
5. The Research Institute of Alpine Economic Plant, Yunnan Academy of Agricultural Sciences, Lijiang, 674100, People’s Republic of China
Abstract:This paper uses pollen analysis to investigate and document the changing climate and vegetation during the Holocene based on a 400?cm core in depth obtained at a wetland site at Haligu (3,277?m a. s. l.) on the Jade Dragon Snow Mountain in Yunnan, China. By applying the Coexistence Approach to pollen data from this core, a quantitative reconstruction of climate over the last 9,300?years was made based on each pollen zone and individual core sample, which reveals the temperature and precipitation change frequently during that time. The qualitative analyses show that from 9300 to 8700?cal. yr BP, the vegetation was dominated by needle-leaved forest (mainly Pinus and Abies), indicating a slightly cool and moderately humid climate. Between 8700 and 7000?cal. yr BP, evergreen broad-leaved forest, dominated by Quercus, became the predominant vegetation type, replacing needle-leaved forest at this elevation, implying a warmer and more humid climate. During the period 7000 to 4000?cal. yr BP, the vegetation changed to mixed needle-leaved and evergreen broad-leaved forest, indicating a warm and moderately humid climate, but somewhat cooler than the preceding stage. From 4000 to 2400?cal. yr BP, the vegetation was again dominated by evergreen broad-leaved forest, but coniferous trees (mainly Pinus) began to increase, especially relative to a decline in Quercus. This implies that the climate remained warm and humid but slight drier than previously. The evergreen Quercus phase (8700–2400?yr BP) was designated as the Holocene climatic optimum in the Haligu core sediments. It is correlated with a markedly greater abundance and diversity of pteridophytes spores than was recorded before or after this period. From 2400?cal. yr BP to present, the vegetation was dominated by needle-leaved forest, of which Pinus formed the predominant component, accompanied by Abies and Tsuga. This reflects a slightly cooler, humid climate but also correlates with a period of increasing human settlement on the lower slopes of the mountain. At this elevated site, several hundred metres above the highest present day settlements, direct palynological evidence of anthropogenic activity is uncertain but we discuss ways in which the marked decline in Quercus pollen during this period may reflect the impact of ways in which natural resources of the mountain have been utilised.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号