首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A modeling analysis of rainfall and water cycle by the cloud-resolving WRF model over the western North Pacific
Authors:, GAO Wenhua , SUI Chung-Hsiung
Institution:1. State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081;Department of Atmospheric Sciences, NTU, Taipei 10617
2. Department of Atmospheric Sciences, NTU, Taipei 10617
Abstract:Simulated regional precipitation, especially extreme precipitation events, and the regional hydrologic budgets over the western North Pacific region during the period from May to June 2008 were investigated with the high-resolution (4-km grid spacing) Weather Research and Forecast (WRF v3.2.1) model with explicit cloud microphysics. The model initial and boundary conditions were derived from the National Centers for Environmental Prediction/Department of Energy (NCEP/DOE) Reanalysis 2 data. The model precipitation results were evaluated against the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis 3B42 product. The results show that the WRF simulations can reasonably reproduce the spatial distributions of daily mean precipitation and rainy days. However, the simulated frequency distributions of rainy days showed an overestimation of light precipitation, an underestimation of moderate to heavy precipitation, but a good representation of extreme precipitation. The downscaling approach was able to add value to the very heavy precipitation over the ocean since the convective processes are resolved by the high-resolution cloud-resolving model. Moreover, the water vapor budget analysis indicates that heavy precipitation is contributed mostly by the stronger moisture convergence; whereas, in less convective periods, the precipitation is more influenced by the surface evaporation. The simulated water vapor budgets imply the importance in the tropical monsoon region of cloud microphysics that affects the precipitation, atmospheric latent heating and, subsequently, the large-scale circulation.
Keywords:cloud-resolving  WRF  precipitation  western North Pacific
本文献已被 维普 万方数据 SpringerLink 等数据库收录!
点击此处可从《大气科学进展》浏览原始摘要信息
点击此处可从《大气科学进展》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号