Interactive Visualization to Advance Earthquake Simulation |
| |
Authors: | Louise H. Kellogg Gerald W. Bawden Tony Bernardin Magali Billen Eric Cowgill Bernd Hamann Margarete Jadamec Oliver Kreylos Oliver Staadt Dawn Sumner |
| |
Affiliation: | 1. Department of Geology and W.M. Keck Center for Active Visualization in the Earth Sciences, University of California, Davis, CA, 95616, USA 2. USGS Western Remote Sensing and Visualization Center, U.S. Geological Survey, Sacramento, CA, 95819, USA 3. Institute for Data Analysis and Visualization (IDAV), Department of Computer Science, and W.M. Keck Center for Active Visualization in the Earth Sciences, University of California, Davis, CA, 95616, USA
|
| |
Abstract: | The geological sciences are challenged to manage and interpret increasing volumes of data as observations and simulations increase in size and complexity. For example, simulations of earthquake-related processes typically generate complex, time-varying data sets in two or more dimensions. To facilitate interpretation and analysis of these data sets, evaluate the underlying models, and to drive future calculations, we have developed methods of interactive visualization with a special focus on using immersive virtual reality (VR) environments to interact with models of Earth’s surface and interior. Virtual mapping tools allow virtual “field studies” in inaccessible regions. Interactive tools allow us to manipulate shapes in order to construct models of geological features for geodynamic models, while feature extraction tools support quantitative measurement of structures that emerge from numerical simulation or field observations, thereby enabling us to improve our interpretation of the dynamical processes that drive earthquakes. VR has traditionally been used primarily as a presentation tool, albeit with active navigation through data. Reaping the full intellectual benefits of immersive VR as a tool for scientific analysis requires building on the method’s strengths, that is, using both 3D perception and interaction with observed or simulated data. This approach also takes advantage of the specialized skills of geological scientists who are trained to interpret, the often limited, geological and geophysical data available from field observations. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|