摘 要: | 结合粒子群优化算法和BP神经网络,利用中国区域88个探空站2015-2017年的数据,以地表温度、地表水汽压、纬度、高程、年积日作为模型输入因子,以积分法获得的Tm值为学习目标,建立适用于中国区域的Tm模型PSOTM。以2018年探空数据为参考值评定PSOTM模型精度,并与Bevis、GPT3、传统BP神经网络(BPTM)、GRNN神经网络(GRNNTM)模型的计算结果进行对比。结果表明,PSOTM模型年均RMSE为3.08 K,相对于Bevis、GPT3、BPTM和GRNNTM模型分别降低26.84%、35.97%、15.38%和4.94%;PSOTM模型年均bias为0.32 K,相对于Bevis、GPT3和BPTM模型分别降低68.93%、82.42%和72.41%,较GRNNTM模型升高37.50%。PSOTM模型在中国区域不同纬度和高程的精度与稳定性优于Bevis、GPT3和BPTM模型,具有良好的适用性。
|