首页 | 本学科首页   官方微博 | 高级检索  
     

基于地物特征提取的车载激光点云数据分类方法
引用本文:李婷,詹庆明,喻亮. 基于地物特征提取的车载激光点云数据分类方法[J]. 国土资源遥感, 2012, 0(1): 17-21
作者姓名:李婷  詹庆明  喻亮
作者单位:武汉大学遥感信息工程学院;武汉大学数字城市研究中心;测绘遥感信息工程国家重点实验室
基金项目:国家高技术研究发展计划(863计划)项目(编号:2006AA12Z151);国家自然科学基金项目(编号:40871211)共同资助
摘    要:车载激光扫描测量方法较传统摄影测量方法具有更多优点,它能快速采集大面积、高精度的三维空间数据,具有广阔的应用前景。针对车载激光扫描数据的分类问题,提出了一种基于地物特征提取的点云数据分类方法,即采用主成分分析(PCA)方法,在提取多种街区地物点云数据几何特征和总结地物对象特征知识规则的基础上,根据选取的主特征设计一套阶层式的分类方法,并利用该方法对一套车载激光点云数据进行了分类试验。结果表明,该方法的分类效果良好,具有一定的实用性。

关 键 词:车载激光点云数据  特征提取  主成分分析  数据分类

A Classification Method for Mobile Laser Scanning Data Based on Object Feature Extraction
LI Ting,ZHAN Qing-ming,YU Liang. A Classification Method for Mobile Laser Scanning Data Based on Object Feature Extraction[J]. Remote Sensing for Land & Resources, 2012, 0(1): 17-21
Authors:LI Ting  ZHAN Qing-ming  YU Liang
Affiliation:2,3(1.School of Remote Sensing and Information Engineering,Wuhan University,Wuhan 430079,China; 2.Research Centre for Digital City,Wuhan University,Wuhan 430072,China;3.State Key Laboratory of Information Engineering in Surveying,Mapping and Remote Sensing,Wuhan 430074,China)
Abstract:Compared with traditional survey technologies,mobile laser scanning has many advantages.Its characteristics make it possible to rapidly acquire large-area high-precision 3D spatial data for reconstruction of 3D(three-dimensional) model.This paper focuses on the classification of mobile laser scanning data.The authors present a multi-level classification method based on object feature extraction,namely extraction of main features by PCA(Principal Component Analysis).This method was applied to blocks point data obtained by mobile laser scanning,and the results show that the proposed classification method is promising.
Keywords:mobile laser scanning data  feature extraction  PCA  classification
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号