首页 | 本学科首页   官方微博 | 高级检索  
     


Closed-form solution of P4P or the three-dimensional resection problem in terms of Möbius barycentric coordinates
Authors:E. W. Grafarend  J. Shan
Affiliation:(1) Department of Geodetic Science, Stuttgart University, Keplerstrasse 11, D-70174 Stuttgart, Germany, DE
Abstract: The perspective 4 point (P4P) problem - also called the three-dimensional resection problem - is solved by means of a new algorithm: At first the unknown Cartesian coordinates of the perspective center are computed by means of M?bius barycentric coordinates. Secondly these coordinates are represented in terms of observables, namely space angles in the five-dimensional simplex generated by the unknown point and the four known points. Substitution of M?bius barycentric coordinates leads to the unknown Cartesian coordinates (2.8)–(2.10) of Box 2.2. The unknown distances within the five-dimensional simplex are determined by solving the Grunert equations, namely by forward reduction to one algebraic equation (3.8) of order four and backward linear substitution. Tables 1.–4. contain a numerical example. Finally we give a reference to the solution of the 3 point (P3P) problem, the two-dimensional resection problem, namely to the Ansermet barycentric coordinates initiated by C.F. Gau? (1842), A. Schreiber (1908) and A.␣Ansermet (1910). Received: 05 March 1996; Accepted: 15 October 1996
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号