首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A simple critical-state-based double-yield-surface model for clay behavior under complex loading
Authors:Zhen-Yu Yin  Qiang Xu  Pierre-Yves Hicher
Institution:1. Department of Civil Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People’s Republic of China
2. State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, 610059, People’s Republic of China
3. Research Institute in Civil and Mechanical Engineering, UMR CNRS 6183, Ecole Centrale de Nantes, 44300, Nantes, France
Abstract:The critical state concept has been widely used in soil mechanics. The purpose of this study is to apply this concept in the framework of multi-mechanism elastoplasticity. The developed model has two yield surfaces: one for shear sliding and one for compression. In this model, the location of the critical state line is explicitly considered and related to the actual material density to control the peak strength and the phase transformation characteristics. The stress reversal technique is incorporated into the model for describing clay behavior under complex loading including changes of stress direction. The determination of the model parameters is discussed; it requires only one drained or undrained triaxial test up to failure with an initial isotropic consolidation stage. The model is used to simulate drained and undrained tests under monotonic loading with different over-consolidation ratios on various remolded and natural clays, including true triaxial tests with different Lode’s angles. Drained and undrained tests under cyclic loadings are also simulated by using the set of parameters determined from monotonic tests. The comparison between experimental results and numerical simulations demonstrate a good predictive ability of this new simple model.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号