首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effects of Spin Transition and Cation Substitution on the Optical Properties and Iron Partitioning in Carbonate Minerals
Authors:HU Jun  XU Liangxu  LIU Jin  YUE Donghui
Institution:1 Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, Hebei 066004, China 2 Center for High Pressure Science and Technology Advanced Research, Beijing 100193, China; 3 Heilongjiang Province Key Laboratory of Superhard Materials, Department of Physics, Mudanjiang Normal University, Mudanjiang, Heilongjiang 157012, China
Abstract:The high-pressure behavior of deep carbonate dictates the state and dynamics of oxidized carbon in the Earth's mantle, playing a vital role in the global carbon cycle and potentially influencing long-term climate change. Optical absorption and Raman spectroscopic measurements were carried out on two natural carbonate samples in diamond-anvil cells up to 60 GPa. Mg-substitution in high-spin siderite FeCO3 increases the crystal field absorption band position by approximately 1000 cm–1 but such an effect is marginal at >40 GPa when entering the low-spin state. The crystal field absorption band of dolomite cannot be recognized upon compression to 45.8 GPa at room temperature but, in contrast, the high-pressure polymorph of dolomite exhibits a strong absorption band at frequencies higher than (Mg,Fe)CO3 in the low-spin state by 2000–2500 cm–1. Additionally, these carbonate minerals show more complicated features for the absorption edge, decreasing with pressure and undergoing a dramatic change through the spin crossover. The optical and vibrational properties of carbonate minerals are highly correlated with iron content and spin transition, indicating that iron is preferentially partitioned into low-spin carbonates. These results shed new light on how carbonate minerals evolve in the mantle, which is crucial to decode the deep carbon cycle.
Keywords:carbonate petrology/mineralogy  mantle  high pressure  diamond-anvil cell  iron spin transition  iron partitioning  deep carbon cycle
点击此处可从《Acta Geologica Sinica》浏览原始摘要信息
点击此处可从《Acta Geologica Sinica》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号