首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Carboniferous ridge subduction in the Xingmeng Orogenic Belt: Constraints from geochronological,geochemical, and Sr-Nd-Hf isotopic analysis of strongly peraluminous granites and gabbro-diorites in the Xilinhot micro-continent
Authors:Changfeng Liu  Zhiguang Zhou  Guosheng Wang  Chen Wu  Hongying Li  Shiwei Ma
Institution:School of Ocean Sciences,China University of Geosciences(Beijing),Beijing 100083,China;School of Ocean Sciences,China University of Geosciences(Beijing),Beijing 100083,China;School of Earth Science and Resources,China University of Geosciences(Beijing),Beijing 100083,China;School of Earth Science and Resources,China University of Geosciences(Beijing),Beijing 100083,China;Sichuan University of Science&Engineering,Zigong,Sichuan 643002,China;Beijing No.11 High School,Beijing,100062 China
Abstract:The Xingmeng Orogenic Belt evolved through a long-lived orogeny involving multiple episodes of subduction and accretion. However, there is a debate on its tectonic evolution during the Late Paleozoic. Here, we report geochemical, geochronological, and isotopic data from strongly peraluminous granites and gabbro-diorites from the Sunidzuoqi–Xilinhot region. Zircon U–Pb ages suggest that the intrusive rocks were emplaced during the Early Carboniferous (333–322 Ma). The granites exhibit geochemical characteristics similar to S-type granites, with high SiO2 (72.34–76.53 wt.%), Al2O3 (12.45–14.65 wt.%), and A/CNK (1.07–1.16), but depleted Sr, Nb, and Ta contents. They exhibit positive εNd(t) and εHf(t) values (?0.3 to 2.8 and 2.7–5.7, respectively) and young Nd and Hf model ages (TDM2(Nd)=853–1110 Ma and TDM2(Hf)=975–1184 Ma), suggesting that they may be the partial melting products of heterogeneous sources with variable proportions of pelite, psammite, and metabasaltic rocks. The meta-gabbro-diorites from the Maihantaolegai pluton have low SiO2 (47.06–53.49 wt.%) and K2O (0.04–0.99 wt.%) contents, and demonstrate slight light rare earth element (REE) depletion in the chondrite-normalized REE diagrams. They have high zircon εHf(t) values (14.41–17.34) and young Hf model ages (TDM2(Hf)= 230–418 Ma), indicating a more depleted mantle source. The variations of the Sm/Yb and La/Sm ratios can thus be used to assess the melting degree of the mantle source from 5% to 20%, suggesting a quite shallow mantle melting zone. We propose that the petrogenesis and distribution of the strongly peraluminous granites and gabbro-diorites, as well as the tectonic architecture of the region, can be explained by a ridge subduction model. Based on these results, and previous studies, we suggest a southward ridge subduction model for the Sunidzuoqi–Xilinhot region.
Keywords:
本文献已被 万方数据 ScienceDirect 等数据库收录!
点击此处可从《地学前缘(英文版)》浏览原始摘要信息
点击此处可从《地学前缘(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号