Plankton: Its chemical composition and its significance as a source of pelagic sediments |
| |
Authors: | Kurt Bostrom Oliva Joensuu Irene Brohm |
| |
Affiliation: | Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Fla. U.S.A. |
| |
Abstract: | The absolute concentrations of minor and trace elements vary considerably in plankton. However, normalization of elemental abundances versus the minor elements Fe, Al and Zn (instead of the commonly used normalization versus seawater concentrations) demonstrates that these elements show remarkably constant proportions vis à vis each other. Thus, Ti, Fe, Al, Mn, V, and Zr occur in marine lower organisms in the same proportions as in the average shale, whereas Ba, Cr, Cu, Ni, Cd, Pb, Zn and B are enriched relative to the shale abundances, as are also Ca, Mg, Na, K, and Sr. These patterns appear to suggest that marine plankton are rich in lithogenic matter, but this is probably not the normal case.Contrary to the uniformity of plankton, sediments from the Pacific vary considerably in composition. Under the Equatorial high-productivity region the sediments show striking similarities with a mixture of average shale and average plankton mass, as could be expected, whereas sediments from the East Pacific Rise differ considerably from such mixtures. An iron—manganese phase (of deep-seated origin?), mixed with biological matter, on the other hand, yields model sediments with remarkable similarities to the East Pacific Rise deposits. It is therefore likely that biological processes account for a considerable fraction of some elements such as Cu, Ni, Zn and Ba also in the East Pacific Rise metalliferous sediments. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|