首页 | 本学科首页   官方微博 | 高级检索  
     检索      

Paleoproterozoic crustal evolution of the Hengshan–Wutai–Fuping region, North China Craton
基金项目:financially supported by the National Natural Science Foundation of China(Grant Nos.41172055 and 41121062);the China Survey of Geology(1212011121062)
摘    要:An arguable point regarding the Neoarchean and Paleoproterozoic crustal evolution of the North China Craton(NCC)is whether the tectonic setting in the central belt during the mid-Paleoproterozoic(2.35-2.0 Ga)was dominated by an extensional regime or an oceanic subduction-arc regime.A review of the midPaleoproterozoic magmatism and sedimentation for the Hengshan-Wutai-Fuping region suggests that a back-arc extension regime was dominant in this region.This conclusion is consistent with the observation that the 2.35-2.0 Ga magmatism shows a typical bimodal distribution where the mafic rocks mostly have arc affinities and the acidic rocks mainly comprise highly-fractioned calc-alkaline to alkaline(or A-type)granites,and that this magmatism was coeval with development of extensional basins characteristic of transgressive sequences with volcanic interlayers such as in the Hutuo Group.Although the final amalgamation of the NCC was believed to occur at ~1.85 Ga,recent zircon U-Pb age dating for mica schist in the Wutai Group suggests a collisional event may have occurred at ~1.95 Ga.The metamorphic ages of ~1.85 Ga,obtained mostly from the high-grade rocks using the zircon U-Pb approach,most probably indicate uplifting and cooling of these high-grade terranes.This is because(i)phase modeling suggests that newly-grown zircon grains in highgrade rocks with a melt phase cannot date the age of peak pressure and temperature stages,but the age of melt crystallization in cooling stages;(ii)the metamorphic P-T paths with isobaric cooling under 6-7 kb for the Hengshan and Fuping granulites suggest their prolonged stay in the middle-lower crust;and(iii)the obtained metamorphic age data show a continuous distribution from 1.95 to 1.80 Ga.Thus,an alternative tectonic scenario for the Hengshan-Wutai-Fuping region involves:(i)formation of a proto-NCC at ~2.5 Ga;(ii)back-arc extension during 2.35-2.0 Ga resulting in bimodal magmatism and sedimentation in rifting basins on an Archean basement;?

关 键 词:地壳演化  古元古代  中国北方  五台山  克拉通  锆石U-Pb年龄  恒山  平地
收稿时间:15 December 2013

http://www.sciencedirect.com/science/article/pii/S1674987114000358
Authors:Chunjing Wei  ;Jiahui Qian  ;Xiwen Zhou
Institution:[1]MOE Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, China; [2]Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China
Abstract:An arguable point regarding the Neoarchean and Paleoproterozoic crustal evolution of the North China Craton (NCC) is whether the tectonic setting in the central belt during the mid-Paleoproterozoic (2.35–2.0 Ga) was dominated by an extensional regime or an oceanic subduction–arc regime. A review of the mid-Paleoproterozoic magmatism and sedimentation for the Hengshan–Wutai–Fuping region suggests that a back-arc extension regime was dominant in this region. This conclusion is consistent with the observation that the 2.35–2.0 Ga magmatism shows a typical bimodal distribution where the mafic rocks mostly have arc affinities and the acidic rocks mainly comprise highly-fractioned calc-alkaline to alkaline (or A-type) granites, and that this magmatism was coeval with development of extensional basins characteristic of transgressive sequences with volcanic interlayers such as in the Hutuo Group. Although the final amalgamation of the NCC was believed to occur at ~1.85 Ga, recent zircon U–Pb age dating for mica schist in the Wutai Group suggests a collisional event may have occurred at ~1.95 Ga. The metamorphic ages of ~1.85 Ga, obtained mostly from the high-grade rocks using the zircon U–Pb approach, most probably indicate uplifting and cooling of these high-grade terranes. This is because (i) phase modeling suggests that newly-grown zircon grains in high-grade rocks with a melt phase cannot date the age of peak pressure and temperature stages, but the age of melt crystallization in cooling stages; (ii) the metamorphic P–T paths with isobaric cooling under 6–7 kb for the Hengshan and Fuping granulites suggest their prolonged stay in the middle–lower crust; and (iii) the obtained metamorphic age data show a continuous distribution from 1.95 to 1.80 Ga. Thus, an alternative tectonic scenario for the Hengshan–Wutai–Fuping region involves: (i) formation of a proto-NCC at ~2.5 Ga; (ii) back-arc extension during 2.35–2.0 Ga resulting in bimodal magmatism and sedimentation in rifting basins on an Archean basement; (iii) a crustal thickening event in the extended region resulting in a kyanite-type metamorphism at ~1.95 Ga, and (iv) uplifting and cooling of the thickened crust from 1.93 to 1.80 Ga.
Keywords:Bimodal magmatismMetamorphic P-T pathPaleoproterozoic tectonic evolutionHengshan-Wutai-Fuping regionNorth China Craton
本文献已被 维普 ScienceDirect 等数据库收录!
点击此处可从《地学前缘(英文版)》浏览原始摘要信息
点击此处可从《地学前缘(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号