首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Resonance bond numbers: A graph-theoretic study of bond length variations in silicate crystals
Authors:M B Boisen Jr  G V Gibbs  Z G Zhang
Institution:1. Department of Mathematics, Virginia Polytechnic Institute and State University, 24061, Blacksburg, Virginia, USA
2. Department of Geological Sciences, Virginia Polytechnic Institute and State University, 24061, Blacksburg, Virginia, USA
3. Department of Mathematics and Physics, Chengdu College of Geology, 610059, Changdu, Sechuan, People's Republic of China
Abstract:The resonance bond number n, as defined in this paper, is designed to describe the strength of an XO bond as a function of the kinds of atoms present and which atoms are bonded. The calculation of n is made on a fragment extracted from the crystal encompassing the XO bond. If this fragment consists of only the X atom and its coordinating O atoms, then n is numerically equal to the Pauling bond strength, s. In this study a graph-theoretic algorithm is developed permitting the calculation of n using fragments including up to 50 atoms. This algorithm was used to calculate n for all of the bonds in ten silicate crystals. Since bond strength is be inversely related to bond length, we examined the relationship between these two variables and found that n can be used to explain over 70 percent of the variation of XO bond lengths from their average values in the crystals. A fit of the parameter n/r, where r is the row number in the periodic table of the metal atom X, to the observed bond lengths in these crystals yielded the equation R(XO)=1.39(n/r)?0.22 which explains over 95.5 percent of the variation of bond lengths in the crystals. The fact that the same formula with s replacing n was found in an earlier study to be a good estimator of average bond lengths in crystals shows that n relates to individual variations in bond lengths in crystals in the same way that s relates to average bond lengths in crystals. Using minimum energy SiO, AlO and MgO bond lengths and harmonic force constant data calculated for these bonds in hydroxyacid molecules, theoretical equations similar to those used by Pauling to explain bond length variations in hydrocarbons are derived. Bond lengths calculated with these equations for the 10 crystals shows that 95 percent of the variation of the observed bond lengths in these crystals can be explained in terms of n by this purely theoretical model.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号