首页 | 本学科首页   官方微博 | 高级检索  
     

一种改进包模型的遥感图像检索方法
引用本文:杨进, 刘建波, 戴芹. 一种改进包模型的遥感图像检索方法[J]. 武汉大学学报 ( 信息科学版), 2014, 39(9): 1109-1113. DOI: 10.13203/j.whugis20130056
作者姓名:杨进  刘建波  戴芹
作者单位:1 中国科学院遥感与数字地球研究所,北京,100094
摘    要:目的 提出了一种改进的包模型图像检索方法,使用本底图像构建视觉词汇字典。在建库过程中,通过近似KD-Tree搜索本底图像局部不变特征与入库图像特征间的对应匹配关系,并记录该关系;图像检索时,搜索检索图像与本底图像特征的对应关系,进而计算与入库图像的关系。该方法仅保存本底图像的局部不变特征,可实现感兴趣区域的图像检索。实验结果表明,该方法在提高图像检索准确性的同时,可以减少所需存储局部不变特征的数量。

关 键 词:遥感图像检索  本底图像  包模式  视觉词汇  感兴趣区
收稿时间:2014-04-18
修稿时间:2014-09-05

An Improved Remote Sensing Image Retrieval MethodBased on Bag of Word Framework
YANG Jin, LIU Jianbo, DAI Qin. An Improved Remote Sensing Image Retrieval MethodBased on Bag of Word Framework[J]. Geomatics and Information Science of Wuhan University, 2014, 39(9): 1109-1113. DOI: 10.13203/j.whugis20130056
Authors:YANG Jin  LIU Jianbo  DAI Qin
Affiliation:1Institute of Remote Sensing and Digital Earth,Chinese Academy of Sciences,Beijing 100094,China
Abstract:Objective The Bag-of-Words(BoW)approach has lower retrieval accuracy performance for remotesensing image retrieval.The rate of correct results is very low especially when target textures are sim-ilar.To overcome this shortcoming,an indirect comparison between a query and target image basedon local invariant feature of the background image is proposed.The solution has two phases:theprocess of building a database and a retrieval process.After building a database,a search of the nea-rest neighbor feature in a query image in the feature space of the image dataset through an approximateKD-Tree is executed,then their relationship is recorded.The relationship can be used in calculatingsimilarity between a query and target image during a retrieval procedure.Experiments show that theproposed method has a better recognition performance than that of the BoW and,at the same time,needs less storage space for saving local invariant features.
Keywords:remote sensing image retrieval  background image  bag-of-words  visual word
本文献已被 CNKI 等数据库收录!
点击此处可从《武汉大学学报(信息科学版)》浏览原始摘要信息
点击此处可从《武汉大学学报(信息科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号