首页 | 本学科首页   官方微博 | 高级检索  
     


The South Westland Basin: seismic stratigraphy, basin geometry and evolution of a foreland basin within the Southern Alps collision zone, New Zealand
Authors:Keith N. Sircombe  Peter J. J. Kamp
Affiliation:

Department of Earth Sciences, The University of Waikato, Private Bag 3105, Hamilton 2001, New Zealand

Abstract:
This paper develops further the case for a foreland basin origin of South Westland Basin, located adjacent to the Southern Alps mountain belt. Geohistory analyses show Middle Miocene initiation of subsidence in the basin, with marked increases at 5–6 Ma. Five seismic reflection horizons, including basement, Middle Miocene (top Awarua Limestone), top Miocene, mid-Pliocene (PPB) and mid-Pleistocene (PPA) have been mapped through the grid of seismic data. A series of five back-stripped structure contour maps taken together with five isopach maps show that prior to the Middle Miocene, subsidence and sedimentation occurred mainly along the rifted continental margin of the Challenger Plateau facing the Tasman Sea; subsequently it shifted to a foredeep trending parallel to the Southern Alps and located northwest of them. Through the Late Miocene–Recent this depocentre has progressively widened, and the loci of thickest sediment accumulation have moved northwestward, most prominently during the Late Pliocene and Pleistocene with the progradation of a shelf–slope complex. At the northern end of the basin the shelf–slope break is currently located over the forebulge, which appears not to have migrated significantly, probably because the mountain belt is not advancing significantly northwestwards. Modelling of the lithospheric flexure of the basement surface normal to the trend of the basin establishes values of 3.1 to 9.8×1020 N m for the flexural rigidity of the Australia Plate. This is at the very low end of rigidities for plates, and 1–2 orders of magnitude less than for the Australia Plate beneath the Taranaki Basin. Maps of tectonic subsidence where the influence of sediment loading is removed also clearly identify the source of the loading as lying within or beneath the mountain belt. The basin fill shows a stratigraphic architecture typical of underfilled ancient peripheral foreland basins. This comprises transgressive (basal unconformity, thin limestone, slope-depth mudstone, flysch sequence) and regressive (prograding shelf–slope complex followed by molasse deposits) components. In addition the inner margin of the basin has been inverted as a result of becoming involved in the mountain building, as revealed earlier by fission track thermochronological data. The timing and degree of inversion fits well with the geometrical and stratigraphic development of the basin. That the inversion zone and the coastal plain underlain by molasse deposits are narrow, and most of the basin is beneath the sea, highlights this as an underfilled active foreland basin. The basin is geodynamically part of the Southern Alps collision zone.
Keywords:Southern Alps   New Zealand   Australia–Pacific plate boundary   stratigraphy   tectonics
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号