Abstract: | The yield level of an insulator is one of the important parameters which are related to responses and absorbing energy under seismic input energy in isolated structures. The purpose of this paper is to determine the optimal ratios of yield force of the isolator (Qy) to the total weight of the structures (W). To obtain the optimal ratio, 1044 two-degree-of-freedom isolated bridge models, which have bilinear isolators, were selected. These 2-DOF isolated bridge models with superstructure isolation can consider pier flexibility and various parameters of the isolator. Two formulas for determining the optimal yield ratio are proposed and compared with the previous researches. RAE (the ratio of absorbed energy by the isolator to the total input energy) is related directly to structural responses, and Optimal Yield Ratio (OYR), defined as a yield ratio at maximum RAE, can be obtained from the relationship between RAE and Qy/W. Here, we found that RAE is a reliable factor to evaluate OYR, and it is proportional to earthquake amplitudes under the same kinds of earthquake loadings. Using the proposed formulas, OYR is determined and the optimal yield force of the isolator can be obtained easily and reliably at a seismic isolation design stage. Copyright © 1999 John Wiley & Sons, Ltd. |