首页 | 本学科首页   官方微博 | 高级检索  
     


“Pseudosinhalite”, a new hydrous MgAl-borate: synthesis, phase characterization, crystal structure, and PT-stability
Authors:Peter Daniels  Sigrid Krosse  Günter Werding  Werner Schreyer
Affiliation:Institut für Mineralogie, Ruhr-Universit?t Bochum, D-44780 Bochum, Germany, DE
Abstract:The new synthetic phase Mg2Al3O[BO4]2(OH) provisionally named “pseudosinhalite” is optically, chemically, and structurally similar to the mineral sinhalite, MgAl[BO4], isostructural with forsterite. It grows hydrothermally from appropriate bulk compositions in the range 4–40?kbar at temperatures that increase with pressure (~650?→?900?°C), and it breaks down at higher temperatures to sinhalite?+?corundum?+?H2O. At P?≥?20?kbar single-phase products of euhedral twinned crystals could often be obtained. Pseudosinhalite is monoclinic with a?=?7.455 (1) Å, b?=?4.330 (1) Å, c?=?9.825 (2) Å, β?=?110.68 (1)°, and space group P21/c. Crystal structure analysis reveals that pseudosinhalite is also based on hexagonal close packing (hcp) of oxygen atoms with Mg and Al in octahedral and B in tetrahedral coordination. In pseudosinhalite the winged octahedral chains in the plane of hcp are not straight as in sinhalite but have a zigzag, 3-repeat period (Dreierkette), and only 1/10 instead of 1/8 of all tetrahedral sites are filled by boron. Hydrogen is located at a split position between two oxygen atoms O5—O5, which are only 2.550 Å apart and thus generate strong hydrogen bonding. This may be responsible for the absence of an hydroxyl absorption band between 2800?cm?1 and 3500?cm?1 in the powder IR spectrum. The equilibrium breakdown curve of pseudosinhalite to form sinhalite, corundum, and water was determined by bracketing experiments to pass through 10?kbar, 745?°C and 35?kbar, 950?°C, giving a slope of about 8?°C/kbar, similar to dehydration curves of some silicates at high pressure. In nature pseudosinhalite could have been misidentified as sinhalite. A possible appearance, like sinhalite in boron-rich skarns, would require more aluminous bulk compositions than for sinhalite at relatively low temperatures. However, pseudosinhalite might also form as a hydrous alteration product of sinhalite at low temperatures, perhaps in association with szaibelyite, MgBO2(OH).
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号