首页 | 本学科首页   官方微博 | 高级检索  
     

两次陕北暴雨过程热力动力机制诊断
引用本文:赵强,王楠,李萍云,屈丽玮. 两次陕北暴雨过程热力动力机制诊断[J]. 应用气象学报, 2017, 28(3): 340-356. DOI: 10.11898/1001-7313.20170308
作者姓名:赵强  王楠  李萍云  屈丽玮
作者单位:陕西省气象台, 西安 710014
基金项目:陕西省自然科学基础研究计划(2015JM4126),公益性行业(气象)科研专项(GYHY201306005)
摘    要:利用常规气象观测资料、NCEP FNL分析资料(水平分辨率为1°×1°,时间分辨率为6 h),对2013年7月21-22日和2014年7月8-9日两次陕北暴雨过程成因进行热力动力诊断,结果表明:两次陕北暴雨与高低空急流关系密切,暴雨带位于低空急流左侧的水汽辐合区,“0721”过程低空急流更强,在高低空急流耦合的强上升运动区(延安)出现大暴雨。降水前期,两次过程大气均存在对流不稳定,切变线触发对流,产生强降水,而其释放的凝结潜热加热形成中低层大气的热力不连续面,湿斜压性及锋生增强,造成整层饱和大气的抬升,维持强降水。“0721”过程前期对流降水的潜热释放更大,由此反馈的低空急流及锋生更强,出现大暴雨天气。广义对流涡度矢量垂直分量很好地描述了两次暴雨过程高低空急流耦合作用以及凝结潜热释放增强的锋生作用,其变化趋势能够反映降水的发展和减弱过程。暴雨出现在湿热力平流参数垂直积分大值中心及南侧的高梯度区,大值中心出现后约6 h会产生强降水,这对于强降水落区的预报有一定指示意义。

关 键 词:大暴雨   高低空急流   垂直次级环流   凝结潜热   锋生
收稿时间:2016-11-30
修稿时间:2017-03-31

Diagnosis of Thermal and Dynamic Mechanisms of Two Rainstorm Processes in Northern Shaanxi
Zhao Qiang,Wang Nan,Li Pingyun and Qu Liwei. Diagnosis of Thermal and Dynamic Mechanisms of Two Rainstorm Processes in Northern Shaanxi[J]. Journal of Applied Meteorological Science, 2017, 28(3): 340-356. DOI: 10.11898/1001-7313.20170308
Authors:Zhao Qiang  Wang Nan  Li Pingyun  Qu Liwei
Affiliation:Shaanxi Provincial Meteorological Observatory, Xi'an 710014
Abstract:Based on the conventional meteorological observations and 6 h 1°×1° NCEP FNL analysis data, two heavy rain processes occurred on 21-22 July 2013 and 8-9 July 2014 in northern Shaanxi are diagnosed with synoptic method and dynamic diagnosis method. It shows that both processes can be attributed to the intersection of the warm moist air flow along the edge of subtropical high at 500 hPa and the cold air brought from plateau troughs. Low-level jet plays an important role, as it provides adequate water vapor and water vapor convergence lifts on the left side of the shear line. The vertical secondary circulation produced by the coupling of upper-and low-level jet is an important triggering factor. Heavy rainfall in "0721" process occurs mainly at Yan''an where strong coupling of upper-level jet and low-level jet is located. There is strong convective instability in the atmosphere in the initial stage of precipitation during both rainstorm processes. Convergence lifting from the low-level shear line triggers convection energy, resulting in strong precipitation. The latent heat of condensation released by the precipitation extends downward to the middle atmosphere, and leads to thermal discontinuity of the middle and lower atmosphere. Atmospheric wet baroclinicity and frontogenesis significantly enhances, causing the uplift of whole layer saturated atmosphere and strong precipitation, finally producing heavy rainfall process. Because the convective precipitation is stronger and latent heat released is greater in "0721" rainstorm process, the feedback of the low-level jet and the middle atmosphere frontogenesis is stronger, and therefore the precipitation is heavier. The vertical component of generalized convective vorticity vector describes the enhancing of vertical wind shear very well, and describes the frontogenesis which is increased by condensation latent heat that released by water vapor phase transition in the middle and lower layers very well. Therefore, the changing trend of generalized convective vorticity vector can reflect the development and decrease of precipitation. The large value center and high gradient area on the south side of the vertically integrated moist thermodynamic advection parameters is consistent with rainstorm fall area, and it appears about 6 hours before the precipitation, indicating it can be used to effectively forecast regional precipitation.
Keywords:heavy rain  upper level and low level jet  vertical secondary circulation  latent heat of condensation  frontogenesis
本文献已被 CNKI 等数据库收录!
点击此处可从《应用气象学报》浏览原始摘要信息
点击此处可从《应用气象学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号