首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Potential impacts of sea-level rise on the Mid- and Upper-Atlantic Region of the United States
Authors:Shuang-Ye Wu  Raymond Najjar  John Siewert
Institution:1. Department of Geology, University of Dayton, 300 College Park Ave., Dayton, OH, 45469, USA
2. Pennsylvania State University, State College, PA, USA
Abstract:We made projections of relative sea-level rise, horizontal inundation, and the associated impacts on people and infrastructure in the coastal portion of the Mid- and Upper-Atlantic Region (MUAR) of the United States. The output of five global climate models (GCMs) run under two greenhouse gas scenarios was used in combination with tide gauge observations to project sea-level increases ranging from 200 to 900 mm by 2100, depending on location, GCM and scenario. The range mainly reflects equal contributions of spatial variability (due to subsidence) and GCM uncertainty, with a smaller fraction of the range due to scenario uncertainty. We evaluated 30-m Digital Elevation Models (DEMs) using 10-m DEMs and LIDAR data at five locations in the MUAR. We found average RMS differences of 0.3 m with the 10-m DEMs and 1.2 m with the LIDAR data, much lower than the reported mean RMS errors of 7 m for the 30-m DEMs. Using the 30-m DEMs, the GCM- and scenario-means of projected sea-level rise, and local subsidence estimates, we estimated a total inundation of 2,600 km2 for the MUAR by 2100. Inundation area increases to 3,800 km2 at high tide if we incorporate local tidal ranges in the analysis. About 510,000 people and 1,000 km of road lie within this area. Inundation area per length of coastline generally increases to south, where relative sea-level rise is greater and relief is smaller. More economically developed states, such as New York and New Jersey, have the largest number of people and infrastructure exposed to risk of inundation due to sea-level rise.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号