首页 | 本学科首页   官方微博 | 高级检索  
     


Anhydrous partial melting of an iron-rich mantle II: primary melt compositions at 15 kbar
Authors:Constance M. Bertka  John R. Holloway
Affiliation:(1) Present address: Geophysical Laboratory, Carnegie Institution of Washington, USA;(2) Department of Geology, Arizona State University, USA;(3) Department of Chemistry, Arizona State University, USA
Abstract:
Primary melt and coexisting mineral compositions, at increasing degrees of partial melting at 15 kbar, were determined for an iron-rich martian mantle composition, DW. The composition of primary melts near the solidus was determined with basalt-peridotite sandwich experiments. In order to evaluate the approach of the liquids to equilibrium with a DW mantle assemblage, experiments were also performed to establish the liquidus mineralogy of the primary melts. Primary melt compositions produced from an iron-rich mantle are more picritic than those produced from an iron-poor mantle. By increasing the iron content of a model mantle composition (decreasing the mg#, where mg# = atomic [Mg/(Mg+Fe2+)*100]), picritic and komatiitic magmas result at lower percentages of melting and at temperatures closer to the solidus than in an iron-poor mantle. Terrestrial iron-rich primitive volcanics may be the partial melting products of iron-rich, mg# ge80, source regions. The DW partial melting results support the conclusion of previous authors that the parent magmas of the SNC (shergottites, nakhlites, chassignites) meteorites were derived from a source region that had been previously depleted in an aluminous phase.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号