首页 | 本学科首页   官方微博 | 高级检索  
     

砂土地震液化预测的人工神经网络模型
引用本文:刘红军,薛新华. 砂土地震液化预测的人工神经网络模型[J]. 岩土力学, 2004, 25(12): 1942-1946
作者姓名:刘红军  薛新华
作者单位:中国海洋大学 环境科学与工程学院,山东 青岛 266003
基金项目:山东省建设厅基金项目资助。
摘    要:
在简要分析BP算法的基础上,应用BP网络的理论与方法,选取烈度、震中距、平均粒径、不均匀系数、地下水埋深、砂层埋深、标贯击数、剪应力比等8个实测指标,建立了砂土液化预测的神经网络模型。通过实例计算与模型评价、验证了该模型的科学性、高效性并较规范法、Seed简化法等传统方法具有更高的预测精度,说明人工神经网络是解决非线性问题的有效方法之一。

关 键 词:人工神经网络  BP算法  预测  砂土液化  模型评价  
文章编号:1000-7598-(2004)12-1942-05
收稿时间:2003-07-18

Artificial neural network model for prediction of seismic liquefaction of sand soil
LIU Hong-jun,XUE Xin-hua. Artificial neural network model for prediction of seismic liquefaction of sand soil[J]. Rock and Soil Mechanics, 2004, 25(12): 1942-1946
Authors:LIU Hong-jun  XUE Xin-hua
Affiliation:College of Environmental Science and Engineering,Ocean University of China,Qingdao 266003,China
Abstract:
Based on simply analyzing the back propagation algorithm, the principles of the BP neural network are applied to predicting sand liquefaction with eight factors listed as follows: seismic intensity, epicenter distance, mean diameter, coefficient of non-uniformity, underground water depth, sand depth, blow number of standard penetration test, ratio of shearing stress. Through computing practical examples and assessing the model, the model is manifested to be scientific and effective with much more accurate results than the Norm method and seed simplified method. The results show that the method is an efficient one in solving nonlinear problems.
Keywords:artificial neural networks  BP algorithm  prediction  liquefaction of sand soil  assessment of model
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《岩土力学》浏览原始摘要信息
点击此处可从《岩土力学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号