首页 | 本学科首页   官方微博 | 高级检索  
     

遗传算法优化的支持向量机湿地遥感分类——以洪河国家级自然保护区为例
引用本文:臧淑英,张策,张丽娟,张玉红. 遗传算法优化的支持向量机湿地遥感分类——以洪河国家级自然保护区为例[J]. 地理科学, 2012, 0(4): 434-441
作者姓名:臧淑英  张策  张丽娟  张玉红
作者单位:哈尔滨师范大学地理科学学院
基金项目:国家自然基金重点项目(41030743)资助
摘    要:湿地遥感分类作为湿地管理、监测与评价的重要手段,受到了广泛的关注。遗传算法(GA)借鉴了生物进化规律进行启发式搜索寻优,支持向量机(SVM)是一种新型的空间数据挖掘方法,二者相结合可以发挥各自的优势,寻找到支持向量机的全局最优参数,从而较准确地对湿地进行遥感分类。以洪河自然保护区为例,采用遗传算法优化的支持向量机方法进行了湿地遥感分类研究。同格网搜索下的支持向量机湿地遥感分类及最大似然监督分类对比,结果表明,遗传算法优化较格网搜索方式总精度提高了7.29%,较最大似然监督分类提高了12.06%,方法改善了沼泽、草地与裸地三种地物间的区分,是湿地遥感分类的有效手段。

关 键 词:湿地  遥感分类  遗传算法  支持向量机  洪河自然保护区

Wetland Remote Sensing Classification Using Support Vector Machine Optimized With Genetic Algorithm: A Case Study in Honghe Nature National Reserve
ZANG Shu-ying,ZHANG Ce,ZHANG Li-juan,ZHANG Yu-hong. Wetland Remote Sensing Classification Using Support Vector Machine Optimized With Genetic Algorithm: A Case Study in Honghe Nature National Reserve[J]. Scientia Geographica Sinica, 2012, 0(4): 434-441
Authors:ZANG Shu-ying  ZHANG Ce  ZHANG Li-juan  ZHANG Yu-hong
Affiliation:(College of Geographical Sciences,Harbin Normal University,Harbin,Heilongjiang 150025,China)
Abstract:Wetland remote sensing classification,as an important means of wetland management,monitoring and assessment,has been widely concerned.Genetic Algorithm(GA) does heuristic search optimization which references the law of biological evolution,while Support Vector Machine(SVM) is a new kind of spatial data mining method.Combination of both can develop their own advantages to do wetland remote sensing classification exactly,by searching the global optimal parameters of Support Vector Machine.Taking Honghe Nature Reserve as a case study,wetland remote sensing classification using Support Vector Machine optimized with Genetic Algorithm(GA-SVM) was explored in this paper.In comparison with wetland classification using support vector machine with parameters searched by Grid and the Maximum Likelihood Classification.The experimental results show that,the overall accuracy of Genetic Algorithm optimization has increased 7.29% compared to Grid Search method,and has increased 12.06% compared to the Maximum Likelihood Classification,by improving the discrimination among marsh,meadow and bare land.Therefore,GA-SVM is an effective tool in wetland remote sensing classification.
Keywords:wetland  remote sensing classification  Genetic Algorithm  Support Vector Machine  Honghe National Nature Reserve
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号