首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Role of melt during deformation in the deep crust
Authors:Cameron Davidson  Stefan M Schmid  Lincoln S Hollister
Institution:Geologisches Institut der Universität, Bernoullistrasse 32, CH-4056 Basel, Switzerland;Department of Geological and Geophysical Sciences, Princeton University, Princeton, New Jersey 08544, USA
Abstract:Deformation in the deep crust is strongly influenced by the presence of melt. Injected melt (or magma) weakens the crust because strain will tend to localize where melt is present. The amount of strain a pluton may accommodate is dependent on the length of time it takes for a pluton to crystallize and the strain rate. For plutons that intrude into rocks which are near the solidus temperature of the melt, crystallization times can be quite long (> 1Myr).
Partial melting of deep crustal rocks can lead to melt-enhanced embrittlement. This occurs because the volume change for most melting reactions is positive. Therefore, when the rate of melt production outpaces the rate at which melt can leave the system, the melt pressure increases. Eventually, the melt pressure may become sufficiently high that the melting rocks behave in a brittle fashion and fracture.
Conjugate sets of dilatant shear fractures filled with melt occur in migmatite from the Central Gneiss belt (Canada); this suggests that melt-enhanced embrittlement occurred in these rocks. An expression which relates the magnitude of differential stress to the angle between conjugate dilatant shear fractures is derived. Assuming that migmatite has a small tensile strength, differential stresses are ≤ 20 MPa in migmatitic rocks at the time melt-enhanced embrittlement occurs. The occurrence of melt-enhanced embrittlement shows that a switch in deformation mechanism from plastic flow to cataclasis is possible in the deep crust during melting. Furthermore, repeated episodes of melt-enhanced embrittlement in migmatitic rocks may be an efficient mechanism for extracting melt from partially melted terrains.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号