Ripple formation in combined transdirectional steady and oscillatory flow |
| |
Authors: | J. S. LEE YOUNG J. F. A. SLEATH |
| |
Affiliation: | Department of Engineering, University of Cambridge, Trumpington St., Cambridge CB2 1PZ, UK |
| |
Abstract: | Measurements are described of the geometry of ripples formed on beds of sand exposed to a steady current at right angles to an oscillatory flow. Four different sands were studied. The oscillation was produced by an oscillating tray set into the bed of a steady-flow flume. It was observed that straight-crested ripples formed by oscillatory flow would usually develop a ‘serpentine’ form when the superimposed steady current exceeded a certain limit. For amplitudes of the tray velocity U∞ less than about 0.38 m s-1 this limit corresponded to U∞/ū*c>31, where ū*c is the shear velocity measured just upstream of the oscillating tray. It is suggested that the serpentine form is caused by the interaction of vortices carried back and forth between adjacent ripples. On this assumption, the wavelength of the serpentine form would be proportional to the product of period of oscillation and near-bed steady current velocity. The present measurements appear to support this hypothesis although there is also evidence that the wavelength is influenced by preferred spacing patterns between vortices. The measurements also show the ratio of the amplitude of the serpentine form to its wavelength to be approximately constant. Empirical relationships are derived relating ripple geometry to flow and sediment properties. It is observed that the influence of Reynolds number and sediment properties on the geometry is very weak. It is suggested that this is typical of ripples formed with relatively low sediment transport rates. It is also found that, under the present experimental conditions, the ripple spacing in the direction of oscillation is almost independent of the magnitude of the steady current and in close agreement with the wavelengths previously measured in an oscillating water tunnel. This suggests that the additional inertia effects associated with oscillating tray rigs were not sufficient to affect bed geometry under the present test conditions. |
| |
Keywords: | |
|
|