首页 | 本学科首页   官方微博 | 高级检索  
     检索      

浅地表地球物理技术在岩土工程中的应用与挑战
引用本文:林志平,林俊宏,吴柏林,刘兴昌,洪瑛钧.浅地表地球物理技术在岩土工程中的应用与挑战[J].地球物理学报,2015,58(8):2664-2680.
作者姓名:林志平  林俊宏  吴柏林  刘兴昌  洪瑛钧
作者单位:1. 台湾交通大学土木工程学系, 新竹 300;2. 台湾交通大学防灾与水环境中心, 新竹 300;3. 台湾金门大学都市计划与景观学系, 金门 892
摘    要:地球物理勘探方法在岩土工程的应用已有很长一段时间,但其成效与工程师的期待往往有不小的落差,以致于在一般的工程应用上仍不普遍.近年来浅地表地球物理技术有显着的进展,特别是在走时速度层析成像(Traveltime Tomography)、电阻率层析成像法(Electrical Resistivity Tomography)及多道瞬态面波法(Multichannel Analysis of Surface Wave).本文首先介绍这些方法在台湾岩土工程的应用,主要包括地层土壤液化潜能评估、坝体的安全检测、土壤与地下水污染调查及地基改良的质量管控等,应用案例以台湾常使用的地球物理勘探方法逐一介绍.虽然许多成功案例与新的应用方向对于浅地表地球物理技术在岩土工程应用的推广起了鼓舞作用,本文从工程师的角度提出地球物理勘探工程大量应用的挑战与瓶颈,包括如何提升探测数据的客观性、数据反演非唯一性问题、探测深度与分辨率的限制、实际条件违背反演基本假设的情况、以及地物性质与工程性质链接的不确定性问题,并进一步针对这些问题说明相关研究的进展与实务对策.希冀透过上述探讨,降低物探师与工程师认知上的差距,提升地球物理勘探在工程的应用的合理性与普及性.

关 键 词:浅地表地球物理  岩土工程应用  走时速度层析成像  电阻率层析成像法  多道瞬态面波法  
收稿时间:2014-12-22

Applications and challenges of near surface geophysics in geotechnical engineering
Chih-Ping Lin,Chun-Hung Lin,Po-Lin Wu,Hsing-Chang Liu,Ying-Chun Hung.Applications and challenges of near surface geophysics in geotechnical engineering[J].Chinese Journal of Geophysics,2015,58(8):2664-2680.
Authors:Chih-Ping Lin  Chun-Hung Lin  Po-Lin Wu  Hsing-Chang Liu  Ying-Chun Hung
Institution:1. Department of Civil Engineering, National Chiao Tung University, Taiwan, China;2. Disaster Prevention and Water Environment Research Center, National Chiao Tung University, Taiwan, China;3. Department of Urban Planning and Landscape, National Quemoy University, Kinmen, Taiwan, China
Abstract:Geophysical exploration methods have been applied to geotechnical engineering problem since their early developments. However, the results often do not live up to engineers' expectations. Works still need be done before we see the widespread use of geophysical methods in engineering practice. This study provides an overview of newer developments and applications of near surface geophysical techniques in geotechnical problems. More importantly, the limitations and challenges of current geophysical methods in this context are identified and possible countermeasures are proposed.#br#Near surface geophysical techniques, such as travel time velocity tomography, electrical resistivity tomography(ERT), and multi-channel analysis of surface wave(MASW), have advanced significantly in the last couple of decades within the scientific community. The applications of these methods in Taiwan's geotechnical problems are first examined, including assessment of liquefaction potential, evaluation of dam safety, investigation of soil and groundwater contamination, and quality control and assurance of ground improvements. The seismic travel time tomography was selected to examine the integrity of a concrete dam in terms of P-wave velocity. ERT was used to investigate abnormal seepage in earth dams and soil and groundwater contamination. Shear-wave velocity profiles non-destructively obtained by MASW are relevant to many traditional geotechnical problems, in which the quantitative assessment of liquefaction potential and ground improvements were particularly presented. The effectiveness of these applications is discussed from an engineer's perspective, and the associated challenges and practical countermeasures are systematically addressed.#br# The velocity imaging of the concrete dam was quite successful and promising, allowing the engineer non-destructively "CT scan" the strength of the dam body. ERT works in a similar fashion for water-related problems. However, the results on abnormal dam seepage and groundwater contamination were less conclusive since the resistivity depends both on pore-water properties and geological factors. So it's important to integrate geological background and results from geotechnical investigation or monitoring. In addition, time-lapse geophysical measurements together with geotechnical monitoring reveal additional information and are valuable for geotechnical process control, such as groundwater remediation and ground improvement. Shear-wave velocity, which has a stronger link to geotechnical stiffness property, is now readily measured by MASW. Its applications on assessment of liquefaction potential and ground improvements were quite effective, at least qualitatively. However, MASW is basically a 1-D method and does not provide S-wave velocity image with high spatial resolution. Many limitations and potential pitfalls of geophysical methods exist but are not apparent to end users. They are systematically discussed from an engineer's perspective. The non-uniqueness nature and weak link to engineering parameters are common problems of geophysical methods. Reasonable inversion results should be obtained with sufficient a priori information and proper initial models. More conclusive or quantitative engineering interpretation can be achieved by data fusion, time-lapse measurements, and physics-based quantitative modeling. Different assumptions and limitations of investigation depth and spatial resolution are inherent in each geophysical method. They are summarized and made clear to avoid overpromise and over-interpret geophysical results. Some examples of practical countermeasures are illustrated. Finally, researches towards the standardization of geophysical methods are suggested to ultimately promote their widespread use in engineering community.#br#Although successful case studies and innovative applications have strengthened the contribution of new geophysical developments to geotechnical problems, several challenges are identified for more common practice of geophysical surveys in engineering applications from an engineer's perspective. These include the lack of standard in data reduction, non-uniqueness of data inversion, limitations of exploration depth and resolution, field conditions violating model assumptions, and the weak link between geophysical parameters and engineering parameters. Relevant researches and practical countermeasures regarding these issues are partially discussed herein. More rational and widespread use of geophysics may be realized through the understanding of the limitations and potential pitfalls of geophysical techniques and researches to overcome them.
Keywords:Near surface geophysics  Geotechnical applications  Traveltime tomography  Electrical resistivity tomography  Multi-channel analysis of surface wave
本文献已被 CNKI 等数据库收录!
点击此处可从《地球物理学报》浏览原始摘要信息
点击此处可从《地球物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号