首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Impact assessment of climate change,carbon dioxide fertilization and constant growing season on rice yields in China
Authors:Yongqiang Yu  Wen Zhang  Yao Huang
Institution:1. State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
2. State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
Abstract:Rice is the staple food in China, and the country’s enlarging population puts increasing pressure on its rice production as well as on that of the world. In this study, we estimate the impact of climate change, CO2 fertilization, crop adaptation and the interactions of these three factors on the rice yields of China using model simulation with four hypothetical scenarios. According to the results of the model simulation, the rice yields without CO2 fertilization are predicted to decrease by 3.3 % in the 2040s. Considering a constant rice-growing season (GS), the rice yields are predicted to increase by 3.2 %. When the effect of CO2 fertilization is integrated into the Agro-C model, the expected rice yields increase by 20.9 %. When constant GS and CO2 fertilization are both integrated into the model, the predicted rice yield increases by 28.6 %. In summary, the rice yields in China are predicted to decrease in the 2040s by 0.22 t/ha due to climate change, to increase by 0.44 t/ha due to a constant GS and to increase by 1.65 t/ha due to CO2 fertilization. The benefits of crop adaptation would completely offset the negative impact of climate change. In the future, the most of the positive effects of climate change are expected to occur in northeastern and northwestern China, and the expansion of rice cultivation in northeastern China should further enhance the stability of rice production in China.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号