Importance of the mixed-phase cloud distribution in the control climate for assessing the response of clouds to carbon dioxide increase: a multi-model study |
| |
Authors: | Yoko Tsushima S. Emori T. Ogura M. Kimoto M. J. Webb K. D. Williams M. A. Ringer B. J. Soden B. Li N. Andronova |
| |
Affiliation: | (1) Frontier Research Center for Global Change (FRCGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 3173-25 Showamachi, Kanazawa-ku, 236-0001 Yokohama City, Kanagawa, Japan;(2) National Institute for Environmental Studies (NIES), Tsukuba, Japan;(3) Center for Climate System Research (CCSR), University of Tokyo, Chiba, Japan;(4) Hadley Centre for Climate Prediction and Research, Met Office, Exeter, UK;(5) Rosenstiel School for Marine and Atmospheric Science, University of Miami, Miami, FL, USA;(6) Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign (UIUC), Urbana, IL, USA;(7) Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI, USA |
| |
Abstract: | We have conducted a multi-model intercomparison of cloud-water in five state-of-the-art AGCMs run for control and doubled carbon dioxide climates. The most notable feature of the differences between the control and doubled carbon dioxide climates is in the distribution of cloud-water in the mixed-phase temperature band. The difference is greatest at mid and high latitudes. We found that the amount of cloud ice in the mixed phase layer in the control climate largely determines how much the cloud-water distribution changes for the doubled carbon dioxide climate. Therefore evaluation of the cloud ice distribution by comparison with data is important for future climate sensitivity studies. Cloud ice and cloud liquid both decrease in the layer below the melting layer, but only cloud liquid increases in the mixed-phase layer. Although the decrease in cloud-water below the melting layer occurs at all latitudes, the increase in cloud liquid in the mixed-phase layer is restricted to those latitudes where there is a large amount of cloud ice in the mixed-phase layer. If the cloud ice in the mixed-phase layer is concentrated at high latitudes, doubling of carbon dioxide might shift the center of cloud water distribution poleward which could decrease solar reflection because solar insolation is less at higher latitude. The magnitude of this poleward shift of cloud water appears to be larger for the higher climate sensitivity models, and it is consistent with the associated changes in cloud albedo forcing. For the control climate there is a clear relationship between the differences in cloud-water and relative humidity between the different models, for both magnitude and distribution. On the other hand the ratio of cloud ice to cloud-water follows the threshold temperature which is determined in each model. Improved measurements of relative humidity could be used to constrain the modeled representation of cloud water. At the same time, comparative analysis in global cloud resolving model simulations is necessary for further understanding of the relationships suggested in this paper. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|