首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Identifying wildland fire ignition factors through sensitivity analysis of a neural network
Authors:Christos Vasilakos  Kostas Kalabokidis  John Hatzopoulos  Ioannis Matsinos
Institution:(1) Department of Environmental Studies, University of the Aegean, University Hill, 81100 Mytilene, Greece;(2) Department of Geography, University of the Aegean, University Hill, 81100 Mytilene, Greece
Abstract:Artificial neural networks (ANNs) show a significant ability to discover patterns in data that are too obscure to go through standard statistical methods. Data of natural phenomena usually exhibit significantly unpredictable non-linearity, but the robust behavior of a neural network makes it perfectly adaptable to environmental models such as a wildland fire danger rating system. These systems have been adopted by many developed countries that have invested in wildland fire prevention, and thus civil protection agencies are able to identify areas with high probabilities of fire ignition and resort to necessary actions. Since one of the drawbacks of ANNs is the interpretation of the final model in terms of the importance of variables, this article presents the results of sensitivity analysis performed in a back-propagation neural network (BPN) to distinguish the influence of each variable in a fire ignition risk scheme developed for Lesvos Island in Greece. Four different methods were utilized to evaluate the three fire danger indices developed within the above scheme; three of the methods are based on network’s weights after the training procedure (i.e., the percentage of influence—PI, the weight product—WP, and the partial derivatives—PD methods), and one is based on the logistic regression (LR) model between BPN inputs and observed outputs. Results showed that the occurrence of rainfall, the 10-h fuel moisture content, and the month of the year parameter are the most significant variables of the Fire Weather, Fire Hazard, and Fire Risk Indices, respectively. Relative humidity, elevation, and day of the week have a small contribution to fire ignitions in the study area. The PD method showed the best performance in ranking variables’ importance, while performance of the rest of the methods was influenced by the number of input parameters and the magnitude of their importance. The results can be used by local forest managers and other decision makers dealing with wildland fires to take the appropriate preventive measures by emphasizing on the important factors of fire occurrence.
Keywords:Greece  Neural networks  Partial derivatives  Risk assessment  Sensitivity analysis  Wildfire occurrence
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号