Petrogenesis and Implications of Calc-Alkaline Cryptic Hybrid Magmas from Washburn Volcano, Absaroka Volcanic Province, USA |
| |
Authors: | FEELEY, T. C. COSCA, M. A. LINDSAY, C. R. |
| |
Affiliation: | 1DEPARTMENT OF EARTH SCIENCES, MONTANA STATE UNIVERSITY, BOZEMAN, MT 59717, USA 2INSTITUTE OF MINERALOGY AND GEOCHEMISTRY, UNIVERSITY OF LAUSANNE, BFSH 2, 1015 LAUSANNE, SWITZERLAND |
| |
Abstract: | The petrogenesis of calc-alkaline magmatism in the Eocene AbsarokaVolcanic Province (AVP) is investigated at Washburn volcano,a major eruptive center in the low-K western belt of the AVP.New 40Ar/39Ar age determinations indicate that magmatism atthe volcano commenced as early as 55 Ma and continued untilat least 52 Ma. Although mineral and whole-rock compositionaldata reflect near equilibrium crystallization of modal phenocrysts,petrogenetic modeling demonstrates that intermediate compositionmagmas are hybrids formed by mixing variably fractionated andcontaminated mantle-derived melts and heterogeneous siliciccrustal melts. Nd and Sr isotopic compositions along with traceelement data indicate that silicic melts in the Washburn systemare derived from deep-crustal rocks broadly similar in compositionto granulite-facies xenoliths in the Wyoming Province. Our preferredexplanation for these features is that mantle-derived basalticmagma intruded repeatedly in the deep continental crust leadingto fractional crystallization, silicic melt production, andhomogenization of magmas, followed by ascent to shallow reservoirsand crystallization of new plagioclase-rich mineral assemblagesin equilibrium with the intermediate hybrid liquids. The implicationsof this process are that (1) some calc-alkaline magmas may onlybe recognized as hybrids on purely chemical grounds, particularlyin systems where mixing precedes and is widely separated fromcrystallization in space and time, and (2) given the role ascribedto crustal processes at Washburn volcano, the variation betweenrocks that follow calc-alkaline trends in the western AVP andthose that follow shoshonitic trends in the east cannot simplyreflect higher pressures of fractionation to the east in Moho-levelmagma chambers in the absence of crustal interaction. KEY WORDS: petrogenesis; magma mixing; calc-alkaline; Absaroka Volcanic Province; 40Ar/39Ar dates |
| |
Keywords: | |
本文献已被 Oxford 等数据库收录! |
|