首页 | 本学科首页   官方微博 | 高级检索  
     

面向高分卫星遥感共性产品真实性检验的无人机空港布局
引用本文:刘俊伟,陈鹏飞,鹿明,廖小罕. 面向高分卫星遥感共性产品真实性检验的无人机空港布局[J]. 地理学报, 2021, 76(11): 2621-2631. DOI: 10.11821/dlxb202111002
作者姓名:刘俊伟  陈鹏飞  鹿明  廖小罕
作者单位:中国科学院地理科学与资源研究所资源与环境信息系统国家重点实验室,北京100101;安徽大学农业生态大数据分析与应用技术国家地方联合工程技术研究中心,合肥230601;中国科学院地理科学与资源研究所资源与环境信息系统国家重点实验室,北京100101;钱学森空间技术实验室,北京100094;中国科学院地理科学与资源研究所资源与环境信息系统国家重点实验室,北京100101;天津中科无人机应用研究院,天津301800
基金项目:高分辨率对地观测系统重大专项(21-Y20B01-9001-19/22);中国科学院战略先导科技专项(XDA23100100)
摘    要:
针对高分卫星遥感共性产品真实性检验对无人机数据的需求,本文以已有野外台站为依托,开展无人机空港布局研究。首先,综合考虑影响卫星产品空间变异的因素,构建了地理背景覆盖率的物理模型;其次,基于地理背景覆盖率改进覆盖模型提出最大地理背景覆盖模型,并利用简单随机抽样中的样本容量确定方法确定合理的空港数量,分别利用本文提出的最大地理背景覆盖模型和已有最大面积覆盖模型进行空港布局的研究;最后,对两种模型下的空港布局结果进行对比,并利用MODIS EVI数据产品对布局结果进行验证。结果表明,在空港数有限的条件下(n = 60),最大面积覆盖模型选择的空港,其服务范围内的地理背景覆盖率为26.66%,能代表70.37%的中国陆地区域,而最大地理背景覆盖模型选择的空港,其服务范围内的地理背景覆盖率为38.32%,能代表73.36%的中国陆地区域。最大地理背景覆盖模型比最大面积覆盖模型能获得更优的空港布局结果,可用于支撑中国区域面向高分卫星遥感共性产品真实性检验的无人机观测网络建设。

关 键 词:无人机空港布局  最大地理背景覆盖模型  最大面积覆盖模型  高分卫星遥感共性产品
收稿时间:2020-09-07
修稿时间:2021-09-12

Unmanned aerial vehicle airports for verification of common products from China High-resolution Earth Observation System(CHEOS)
LIU Junwei,CHEN Pengfei,LU Ming,LIAO Xiaohan. Unmanned aerial vehicle airports for verification of common products from China High-resolution Earth Observation System(CHEOS)[J]. Acta Geographica Sinica, 2021, 76(11): 2621-2631. DOI: 10.11821/dlxb202111002
Authors:LIU Junwei  CHEN Pengfei  LU Ming  LIAO Xiaohan
Affiliation:1. State Key Laboratory of Resources and Environment Information System, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China2. National Engineering Research Center for Agro-Ecological Big Data Analysis and Application, Anhui University, Hefei 230601, China3. Qian Xuesen Laboratory of Space Technology, Beijing 100094, China4. Tianjin Institute of Application and Research on Unmanned Aerial Vehicles, Tianjin 301800, China
Abstract:
Aiming at the requirement to use unmanned aerial vehicle (UAV) data to verify common products from China High-resolution Earth Observation System (CHEOS), this research examines the distribution of UAV airports using the existing ecological observation stations. Firstly, to comprehensively consider the factors affecting the satellite products, a physical model of the geographical background coverage was proposed. Secondly, a maximal geographic background model is designed based on the improved the coverage model with geographic backgrounds, and the number of UAV airports was determined using the sample size determination method of random sampling. Then, the maximal geographic background covering model and a maximal area covering model were used to study the distribution of UAV airports. Finally, the results of the airport layout under the two models were compared, and MODIS EVI (Enhanced Vegetation Index) data products were used to verify the results. The results showed that for a limited number of airports (n = 60), the geographical background coverage of the service areas of the airports selected by the maximal area coverage model was 26.66%, which represents 70.37% of China's land area. The geographical background coverage of the service areas of the airports selected by the maximal geographical background covering model was 38.32%, which represents 73.36% of China's land area. The layout of the UAV airports selected by the maximal geographic covering model is better than that selected by the maximal area covering model. The results can lay a foundation for the design of an unmanned aerial vehicle observation network for the verification of common products from CHEOS.
Keywords:unmanned aerial vehicle airport distribution  maximal area covering model  maximal geographical background covering model  CHEOS common product  
本文献已被 万方数据 等数据库收录!
点击此处可从《地理学报》浏览原始摘要信息
点击此处可从《地理学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号