首页 | 本学科首页   官方微博 | 高级检索  
     

1990-2019年贡嘎山地区典型冰川表碛覆盖变化及其空间差异
引用本文:廖海军,刘巧,钟妍,鲁旭阳. 1990-2019年贡嘎山地区典型冰川表碛覆盖变化及其空间差异[J]. 地理学报, 2021, 76(11): 2647-2659. DOI: 10.11821/dlxb202111004
作者姓名:廖海军  刘巧  钟妍  鲁旭阳
作者单位:中国科学院、水利部成都山地灾害与环境研究所山地表生过程与生态调控重点实验室,成都610041;中国科学院大学资源与环境学院,北京100049;中国科学院、水利部成都山地灾害与环境研究所山地表生过程与生态调控重点实验室,成都610041
基金项目:国家自然科学基金项目(41871069);四川省杰出青年科技人才项目(2021JDJQ0009);四川省杰出青年科技人才项目(2020JDJQ0002)
摘    要:
表碛覆盖型冰川是中国西部较为常见的冰川类型。表碛层存在于大气—冰川冰界面,强烈影响大气圈与冰冻圈之间的热交换。表碛厚度的空间异质性可极大地改变冰川的消融率和物质平衡过程,进而影响冰川径流过程和下游水资源。基于Landsat TM/TIRS数据,运用能量平衡方程反演了贡嘎山地区冰川表碛厚度,研究了贡嘎山地区冰川在1990—2019年间表碛覆盖范围及厚度变化情况,同时对比了东西坡差异。结果表明:① 贡嘎山地区冰川表碛扩张总面积达43.824 km2。其中,海螺沟冰川扩张2.606 km2、磨子沟冰川1.959 km2、燕子沟冰川1.243 km2、大贡巴冰川0.896 km2、小贡巴冰川0.509 km2、南门关沟冰川2.264 km2,年均扩张率分别为3.2%、11.1%、1.5%、0.9%、1.0%和6.5%;② 海螺沟冰川、磨子沟冰川、燕子沟冰川、大贡巴冰川、小贡巴冰川、南门关沟冰川表碛平均增厚分别为5.2 cm、3.1 cm、3.7 cm、6.8 cm、7.3 cm和13.1 cm;③ 西坡冰川表碛覆盖度高,表碛覆盖年均扩张率低,冰川末端退缩量小;东坡冰川表碛覆盖年均扩张率高,但表碛覆盖度总体低于西坡,冰川末端退缩量大。

关 键 词:海洋型冰川  表碛覆盖型冰川  表碛厚度  冰川变化  贡嘎山
收稿时间:2020-08-28
修稿时间:2021-03-10

Supraglacial debris-cover change and its spatial heterogeneity in the Mount Gongga,1990-2019
LIAO Haijun,LIU Qiao,ZHONG Yan,LU Xuyang. Supraglacial debris-cover change and its spatial heterogeneity in the Mount Gongga,1990-2019[J]. Acta Geographica Sinica, 2021, 76(11): 2647-2659. DOI: 10.11821/dlxb202111004
Authors:LIAO Haijun  LIU Qiao  ZHONG Yan  LU Xuyang
Affiliation:1. Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, CAS, Chengdu 610041, China2. College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:
Debris-covered glaciers are widely distributed in western China. Supraglacial debris lying at the atmosphere-glacier interface plays an important role in the air-ice energy flux and thus influences the underneath ice melt rate. Varying glacier debris thickness will have influence on the mass balance gradient of the debris-covered glacier, the development of ice cliff, ponds and drainage systems, as well as on the downstream runoff process. Using Landsat TM/TIRS images between 1990 and 2019, this study extracted the debris coverage and estimated the thickness changes of the debris-covered glaciers in the Mount Gongga by using a physically-based thermal conductivity method. We found that: (1) The debris coverage of glaciers in the study area totally expanded by 43.824 km2, among which the Hailuogou Glacier expanded 2.606 km2, Mozigou Glacier 1.959 km2, Yanzigou Glacier 1.243 km2, Dagongba Glacier 0.896 km2, Xiaogongba Glacier 0.509 km2 and Nanmenguangou Glacier 2.264 km2. Annual expansion rates of their debris covered area are 3.2%, 11.1%, 1.5%, 0.9%, 1.0% and 6.5%, respectively. (2) In addition to debris cover area expansion, we found thickening debris layers, with glacier wide average debris thickness increasing by 5.2 cm, 3.1 cm, 3.7 cm, 6.8 cm, 7.3 cm and 13.1 cm for the above six mentioned glaciers, respectively. (3) Compared with glaciers on the east slope, debris-covered glaciers on the west slope of the Mount Gongga generally have higher debris cover rate but experienced lower debris cover expansion and lower terminal retreat rate during the past decades.
Keywords:temperate glacier  debris cover  debris thickness  glacier change  Mount Gongga  
本文献已被 万方数据 等数据库收录!
点击此处可从《地理学报》浏览原始摘要信息
点击此处可从《地理学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号