Propriétés fractales de la fragmentation et processus stochastiques de fracturation : approche géométrique 3D à l'aide du modèle ObsifracFractal properties of fragmentation and stochastic fracturing processes: geometrical 3D approach by OBSIFRAC model |
| |
Authors: | Luc Empereur-Mot Thierry Villemin |
| |
Affiliation: | LGCA, université de Savoie, UMR CNRS 5025, 73376, Le Bourget-du-Lac, France |
| |
Abstract: | A numerical rock fragmentation model was elaborated, producing a 3D puzzle of convex polyhedra, geometrically described in a database. In the first scenario, a constant proportion of blocks are fragmented at each step of the process and leads to fractal distribution. In the second scenario, division affects one random block at each stage of the process, and produces a Weibull volume distribution law. Imposing a minimal distance between the fractures, the third scenario reveals a power law. The inhibition of new fractures in the neighbourhood of existing discontinuities could be responsible for fractal properties in rock mass fragmentation. To cite this article: L. Empereur-Mot, T. Villemin, C. R. Geoscience 334 (2002) 127–133. |
| |
Keywords: | fragmentation fractal dimension numerical model power-law stochastic fragmentation fractal dimension modèle numérique loi puissance stochastique Tectonique Tectonics |
本文献已被 ScienceDirect 等数据库收录! |
|