首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Estimation and analysis of GPS satellite DCB based on LEO observations
Authors:Jian Lin  Xinan Yue  Shufan Zhao
Institution:1.Key Laboratory of Earthquake Geodesy, Institute of Seismology,CEA,Wuhan,People’s Republic of China;2.COSMIC Program Office,University Corporation for Atmospheric Research,Boulder,USA;3.Institute of Earthquake Science,CEA,Beijing,People’s Republic of China
Abstract:The Global Positioning System (GPS) satellite differential code bias (DCB) should be precisely calibrated when obtaining ionospheric slant total electron content (TEC). So far, it is ground-based GPS observations that have been used to estimate GPS satellite DCB. With the increased Low Earth Orbit (LEO) missions in the near future, the real-time satellite DCB estimation is a crucial factor in real-time LEO GPS data applications. One alternative way is estimating GPS DCB based on the LEO observations themselves, instead of using ground observations. We propose an approach to estimate the satellite DCB based on Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) and Challenging Minisatellite Payload (CHAMP) GPS observations during the years 2002–2012. The results have been validated through comparisons with those issued by Center for Orbit Determination in Europe (CODE). The evaluations indicate that: The approach can estimate satellite DCB in a reasonable way; the DCB estimated based on CHAMP observations is much better than those on COSMIC observations; the accuracy and precision of DCB show a possible dependency on the ionospheric ionization level. This method is significance for the real-time processing of LEO-based GNSS TEC data from the perspective of real-time applications.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号