首页 | 本学科首页   官方微博 | 高级检索  
     

基于遗传算法的神经网络短期气候预测模型
引用本文:金龙,吴建生,林开平,陈冰廉. 基于遗传算法的神经网络短期气候预测模型[J]. 高原气象, 2005, 24(6): 981-987
作者姓名:金龙  吴建生  林开平  陈冰廉
作者单位:广西气象减灾研究所,广西,南宁,530022;广西师范大学,数学与计算机科学学院,广西,桂林,541001;广西南宁市气象局,广西,南宁,530022;广西师范学院,信息技术系,广西,南宁,530021
基金项目:国家自然科学基金项目(40075021);广西自然科学基金项目(0339025)共同资助
摘    要:用遗传算法优化神经网络的连接权和网络结构,并在遗传进化过程中采取保留最佳个体的方法,进行短期气候预测建模研究。该方法克服了由于神经网络初始权值的随机性和网络结构确定过程中所带来的网络振荡,以及网络极易陷入局部解问题。作为应用实例,以广西全区4月份平均降水作为预报量及前期500hPa月平均高度场,海温场高相关区作为预报因子,建立基于遗传算法的神经网络短期气候预测模型。将这种方法与传统的逐步回归方法作对比分析,结果表明,该方法具有预报精度高,稳定性好的特点。

关 键 词:人工神经网络  遗传算法  预报建模
文章编号:1000-0534(2005)06-0981-07
收稿时间:2004-01-18
修稿时间:2004-01-182004-04-06

Short-Term Climate Prediction Model of Neural Network Based on Genetic Algorithms
JIN Long,WU Jiang-sheng,LIN Kai-ping,CHEN Bing-lian. Short-Term Climate Prediction Model of Neural Network Based on Genetic Algorithms[J]. Plateau Meteorology, 2005, 24(6): 981-987
Authors:JIN Long  WU Jiang-sheng  LIN Kai-ping  CHEN Bing-lian
Affiliation:1. Guangxi Research Institute of Meteorological Disasters Mitigation, Nanning 530022, China ;2. Guangxi Normal University, Guiling 541001, China; 3. Meteorological Bureau of Nanning , Nanning 530022, China; 4. Department of Information Technology, Guangxi Normal College, Nanning 530021, China
Abstract:To set up the short-term climate prediction model in this paper, both the neural network and connection weights of genetic algorithm are optimized, the best individual in evolution process is reserved. Thus it can overcome the defects of unstability of neutral network initial weight and falling easily into local solution. As the applied example of a short-time climate forecast model, April mean precipitation in Guangxi area is taken as the predictand, the antecedent montly mean 500 hPa potential field and sea surface temperature filed in some high correlation areas are taken as the pedictors. Predictive performance between the new model and linear regression model for same predictors is discussed based on the independent samples. Results show that the model is superior in prediction accuracy and stability compared with the traditional method.
Keywords:Artificial neutral network   Genetic algorithms   Forecast model
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号