摘 要: | 文章以福建省漳江口国家级红树林自然保护区为研究区, 提出了一种联合星载光学和合成孔径雷达(SAR)影像的红树林与互花米草分布的自动提取算法, 提取研究区内红树林和互花米草的空间分布。本研究选择2016年、2017年和2018年各一景低潮时的Sentinel-2 A光学影像数据, 获取植被和其他地物的光谱和纹理信息。算法首先基于归一化植被指数、增强型植被指数、地表水分指数以及数字高程模型的相关规则计算红树林和互花米草的潜在分布区; 通过随机森林分类算法区分红树林和互花米草, 2016年、2017年和2018年影像的分类总体精度和Kappa系数分别为98.53%和0.980、96.52%和0.952、98.71%和0.978, 分类效果良好; 使用当年所有Sentinel-1 A/B的SAR影像获得研究区的常年海水分布范围, 使用与海水交界的判据, 实现红树林、互花米草提取范围的优化。研究表明, 研究区2016年、2017年和2018年红树林总面积分别为56.85hm2、59.88hm2和58.61hm2, 互花米草总面积分别为109.23hm2、124.00hm2和142.39hm2, 与前人的研究成果在红树林和互花米草的空间分布和面积量级上有较好的一致性。
|