首页 | 本学科首页   官方微博 | 高级检索  
     

海洋遥感 L3A 数据的优化行程及其组合无损压缩算法研究
引用本文:付东洋,潘德炉,丁又专,李宇隆,肖志强,侯骏雄. 海洋遥感 L3A 数据的优化行程及其组合无损压缩算法研究[J]. 广东海洋大学学报, 2012, 0(3): 70-75
作者姓名:付东洋  潘德炉  丁又专  李宇隆  肖志强  侯骏雄
作者单位:1. 国家海洋局第二海洋研究所,浙江杭州310032
2. 广东海洋大学信息学院,广东湛江524088
基金项目:国家海洋局第二海洋研究所卫星海洋环境动力学国家重点实验室开放基金(SOED1202);热带海洋环境国家重点实验室开放基金(LTO1105);广东海洋大学基金项目(1012152);广东海洋大学博士启动基金(1112332)
摘    要:在比较研究常见的多种无损压缩算法的基础上,进一步研究了符合遥感应用的压缩技术.结合海洋遥感L3A 数据产品的特点,提出了一种基于优化行程编码的无损压缩算法以及该算法与哈夫曼编码相结合的组合压缩算法,可应用于 MODIS、NOAA、HY 等国内外多种卫星的 L3级原始数据文件的压缩.通过9种无损压缩算法的对比实验,结果表明,该算法与其它通用的压缩方法或工具相比,具有最小的时空积,即在压缩时间和空间上具一定的综合优势,且更加高效地传输、存储和共享海量的卫星遥感图像或数据

关 键 词:海洋遥感  无损压缩  优化行程编码  Huffman 编码  压缩率  时空积

Optimized Run-Length Encoding and its Combination-Lossless Compression Algorithms for L3A Data of Ocean Remote Sensing
FU Dong-yang,PAN De-lu,DING You-zhuan,LI Yu-long,XIAO Zhi-qiang,HOU Jun-xiong. Optimized Run-Length Encoding and its Combination-Lossless Compression Algorithms for L3A Data of Ocean Remote Sensing[J]. Journal of Zhanjiang Ocean University, 2012, 0(3): 70-75
Authors:FU Dong-yang  PAN De-lu  DING You-zhuan  LI Yu-long  XIAO Zhi-qiang  HOU Jun-xiong
Affiliation:1.Second Institute of Oceanography,State Oceanic Administration,Hangzhou 310032,China;2.College of Information,Guangdong Ocean University,Zhanjiang 524088,China)
Abstract:By further study of the compression technology fitting to the remote sensing applications on basis of the comparing familiar lossless compression algorithms and by combining the characters of the ocean remote sensing L3A data,an optimized run-length encoding(ORLE) lossless compression algorithm and related combination compression method with Huffman encoding is presented.These algorithms may be used to compress efficiently the L3 raw data files of satellites at home and abroad such as MODIS,NOAA,HY and so on.The experimental results by 9 sorts of lossless compression algorithms show that the proposed algorithms here have minimum product of time and space with the others common compression methods or tools and comprehensive advantages in the compression time and space with more efficiently in transferring,storing and sharing vast amounts of satellite remote sensing images or data.
Keywords:Ocean remote sensing  Lossless compression  Decompression  ORLE  Huffman encoding  Compression ratio  Product of time and space
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号