首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Ecological limits to terrestrial biological carbon dioxide removal
Authors:Lydia J Smith  Margaret S Torn
Institution:1. University of California, Berkeley, Berkeley, CA, USA
2. Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
Abstract:Terrestrial biological atmospheric carbon dioxide removal (BCDR) through bioenergy with carbon capture and storage (BECS), afforestation/reforestation, and forest and soil management is a family of proposed climate change mitigation strategies. Very high sequestration potentials for these strategies have been reported, but there has been no systematic analysis of the potential ecological limits to and environmental impacts of implementation at the scale relevant to climate change mitigation. In this analysis, we identified site-specific aspects of land, water, nutrients, and habitat that will affect local project-scale carbon sequestration and ecological impacts. Using this framework, we estimated global-scale land and resource requirements for BCDR, implemented at a rate of 1 Pg C y?1. We estimate that removing 1 Pg C y?1 via tropical afforestation would require at least 7?×?106 ha y?1 of land, 0.09 Tg y?1 of nitrogen, and 0.2 Tg y?1 of phosphorous, and would increase evapotranspiration from those lands by almost 50 %. Switchgrass BECS would require at least 2?×?108 ha of land (20 times U.S. area currently under bioethanol production) and 20 Tg y?1 of nitrogen (20 % of global fertilizer nitrogen production), consuming 4?×?1012?m3 y?1 of water. While BCDR promises some direct (climate) and ancillary (restoration, habitat protection) benefits, Pg C-scale implementation may be constrained by ecological factors, and may compromise the ultimate goals of climate change mitigation.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号