Using semivariogram parameter uncertainty in hydrogeological applications |
| |
Authors: | Pardo-Igúzquiza Eulogio Chica-Olmo Mario Garcia-Soldado Maria Jose Luque-Espinar Juan A |
| |
Affiliation: | Department of Geodynamics/CEAMA, University of Granada, Campus Fuentenueva, 18071 Granada, Spain.; Instituto Geológico y Minero de España/CEAMA, Urb. Alcazar del Genil 4, 18006 Granada, Spain. |
| |
Abstract: | Geostatistical estimation (kriging) and geostatistical simulation are routinely used in ground water hydrology for optimal spatial interpolation and Monte Carlo risk assessment, respectively. Both techniques are based on a model of spatial variability (semivariogram or covariance) that generally is not known but must be inferred from the experimental data. Where the number of experimental data is small (say, several tens), as is not unusual in ground water hydrology, the model fitted to the empirical semivariogram entails considerable uncertainty. If all the practical results are based on this unique fitted model, the final results will be biased. We propose that, instead of using a unique semivariogram model, the full range of models that are inside a given confidence region should be used, and the weight that each semivariogram model has on the final result should depend on its plausibility. The first task, then, is to evaluate the uncertainty of the model, which can be efficiently done by using maximum likelihood inference. The second task is to use the range of plausible models in applications and to show the effect observed on the final results. This procedure is put forth here with kriging and simulation applications, where the uncertainty in semivariogram parameters is propagated into the final results (e.g., the prediction of ground water head). A case study using log-transmissivity data from the Vega de Granada aquifer, in southern Spain, is given to illustrate the methodology. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|