首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The impact of ocean–atmosphere coupling on the predictability of boreal summer intraseasonal oscillation
Authors:Hye-Mi Kim  In-Sik Kang
Institution:1. School of Earth and Environmental Sciences, Seoul National University, Seoul, 151-742, South Korea
Abstract:The impact of ocean–atmosphere coupling on the simulation and prediction of the boreal summer intraseasonal oscillation (ISO) has been investigated by diagnosing 22-year retrospective forecasts using the Seoul National University coupled general circulation model (CGCM) and its atmospheric GCM (AGCM) forced with SSTs derived from the CGCM. Numerous studies have shown that the ocean–atmosphere coupling has a significant effect on the improvement of ISO simulation and prediction. Contrary to previous studies, this study shows similar results between CGCM and AGCM, not only in regard to the ISO simulation characteristics but also the predictability. The similarities between CGCM and AGCM include (1) the ISO intensity over the entire Asian-monsoon region; (2) the spatiotemporal evolution of the northward propagating ISO (NPISO); and (3) the potential and practical predictability. A notable difference between CGCM and AGCM is the phase relationship between precipitation and SST anomalies. The CGCM and observation exhibits a near-quadrature relationship between precipitation and SST, with the former lagging about two pentads. The AGCM shows a less realistic phase relationship. The similar structure and propagation characteristics of ISO between the CGCM and AGCM suggest that the internal atmospheric dynamics could be more essential to the ISO than the ocean–atmosphere interaction over the Indian monsoon region.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号