首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Magnetospheric plasma interactions
Authors:Carl-Gunne Fälthammar
Institution:(1) Department of Plasma Physics, Alfvén Laboratory, The Royal Institute of Technology, Stockholm, Sweden
Abstract:The Earth's magnetosphere (including the ionosphere) is our nearest cosmical plasma system and the only one accessible to mankind for extensive empirical study by in situ measurements. As virtually all matter in the universe is in the plasma state, the magnetosphere provides an invaluable sample of cosmical plasma from which we can learn to better understand the behaviour of matter in this state, which is so much more complex than that of unionized matter.It is therefore fortunate that the magnetosphere contains a wide range of different plasma populations, which vary in density over more than six powers of ten and even more in equivalent temperature. Still more important is the fact that its dual interaction with the solar wind above and the atmosphere below make the magnetosphere the site of a large number of plasma phenomena that are of fundamental interest in plasma physics as well as in astrophysics and cosmology.The interaction of the rapidly streaming solar wind plasma with the magnetosphere feeds energy and momentum, as well as matter, into the magnetosphere. Injection from the solar wind is a source of plasma populations in the outer magnetosphere, although much less dominating than previously thought. We now know that the Earth's own atmosphere is the ultimate source of much of the plasma in large regions of the magnetosphere. The input of energy and momentum drives large scale convection of magnetospheric plasma and establishes a magnetospheric electric field and large scale electric current systems that carry millions of ampère between the ionosphere and outer space. These electric fields and currents play a crucial role in generating one of the most spectacular among natural phenomena, the aurora, as well as magnetic storms that can disturb man-made systems on ground and in orbit. The remarkable capability of accelerating charged particles, which is so typical of cosmical plasmas, is well represented in the magnetosphere, where mechanisms of such acceleration can be studied in detail. In situ measurements in the magnetosphere have revealed an unexpected tendency of cosmical plasmas to form cellular structure, and shown that the magnetospheric plasma sustains previously unexpected, and still not fully explained, chemical separation mechanisms, which are likely to operate in other cosmical plasmas as well.Presented at the 2nd UN/ESA Workshop, held in Bogotá, Colombia, 9–13 November, 1992.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号