首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Rock slope response to strong earthquake shaking
Authors:C Massey  F Della Pasqua  C Holden  A Kaiser  L Richards  J Wartman  M J McSaveney  G Archibald  M Yetton  L Janku
Institution:1.GNS Science,Lower Hutt,New Zealand;2.Rock Engineering Consultant, The Tree House,Akaroa,New Zealand;3.The University of Washington,Seattle,USA;4.Geotech Consulting,Ltd., Christchurch,New Zealand;5.University of Canterbury,Christchurch,New Zealand
Abstract:The 2010–2011 Canterbury earthquakes triggered many mass movements in the Port Hills including rockfalls, debris avalanches, slides and slumps, and associated cliff-top cracking. The most abundant mass movements with the highest risk to people and buildings were rockfalls and debris avalanches sourced from up to 100 m high cliffs inclined at angles >65°. Cliffs lower than 10 m in height generally remained stable during the strong shaking, with only isolated release of a few individual boulders. We used site-specific data to investigate the factors that controlled the response of the cliffs to the main earthquakes of the Canterbury sequence, adopting two-dimensional finite element seismic site response and stability modeling that was calibrated using the field observations and measurements. Observations from the assessed cliffs in response to the earthquakes show the taller cliffs experienced larger amounts of permanent cliff-top displacement and produced larger volumes of debris than the smaller cliffs. Results indicated a mean KMAX amplification ratio for all sites under study of 1.6 (range of 1.1–3.8). Field data and numerical modeling results, however, show that amplification of shaking does not necessarily increase linearly with increasing cliff height. Instead, our results show that accelerations are amplified mainly due to the impedance contrasts between the geological materials, corresponding to where strong differences in rock mass shear wave velocity exist. The resulting acceleration contrasts and rock mass strength control cliff stability. However, the amount of permanent slope displacement and volume of debris leaving the cliffs varied between the sites, due to site-specific geometry and rock mass strength.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号