首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Seismic behaviors of soil slope in permafrost regions using a large-scale shaking table
Authors:Hong Sun  FuJun Niu  KaiJian Zhang  XiuRun Ge
Institution:1.School of Naval Architecture, Ocean and Civil Engineering,Shanghai Jiao Tong University,Shanghai,People’s Republic of China;2.State Key Laboratory of Frozen Soil Engineering, Cold and Arid Regions Environmental and Engineering Research Institute,Chinese Academy of Sciences,Lanzhou,People’s Republic of China
Abstract:Large-scale shaking table model tests were carried out to study the dynamic behaviors of slopes and failure mechanism of landslide in permafrost regions. The model slope was constituted of silty clay layer stacked on an ice layer with 8° surface slope. Acceleration, displacement, and pore pressure were measured subjected to vertical and horizontal seismic loadings. The horizontal wave has a stronger influence on the failure of the model than the vertical wave motion, and the natural frequency of vibration in the horizontal direction decreased obviously at the failure state. The model slope has three components of different nonlinear mechanical properties, which are the soil layer, soil-ice interface, and ice layer. The amplification factor of peak ground acceleration is obviously smaller at the soil-ice interface than that at the soil and ice layer. The acceleration responses are nonlinear because of the nonlinear soil properties and degradation of modulus with increasing horizontal acceleration. Especially, excess pore pressure generation was observed near the soil-ice interface of the slope subjected to higher input acceleration, which resulted in the decrease of the effective stress. Failure surface appeared to be the soil-ice interface, which was consistent with the field observations of landslides in permafrost regions. Slope failure could be defined based on the massive movement of the slope, characterized by integral sliding pattern along the soil-ice interface without the distinct deformation inside the sliding body. The results show that the sliding of the slope with soil layer at gentle gradient is mainly triggered by the combined action of horizontal seismic wave, existence of soil-ice interface, and pore pressure generation in permafrost regions.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号