首页 | 本学科首页   官方微博 | 高级检索  
     

基于深度学习的低剂量CT成像算法研究进展
引用本文:韩泽芳,上官宏,张雄,韩兴隆,桂志国,崔学英,张鹏程. 基于深度学习的低剂量CT成像算法研究进展[J]. CT理论与应用研究, 2022, 31(1): 117-134. DOI: 10.15953/j.1004-4140.2022.31.01.14
作者姓名:韩泽芳  上官宏  张雄  韩兴隆  桂志国  崔学英  张鹏程
作者单位:太原科技大学电子信息工程学院,太原030024,太原科技大学电子信息工程学院,太原030024;中北大学生物医学成像与影像大数据山西省重点实验室,太原030051,中北大学生物医学成像与影像大数据山西省重点实验室,太原030051
基金项目:山西省高等学校科技创新项目;山西省自然科学基金;国家青年科学基金项目
摘    要:计算机断层扫描成像(CT)技术具有成像速度快分辨率高的优点,广泛应用于医学临床诊断中.然而,提高剂量辐射会引发人体组织器官受损,降低剂量又会造成成像质量严重下降.为解决上述矛盾,在确保成像质量满足临床诊断需求的条件下,研究如何最大程度地降低X射线辐射对人体造成的伤害,己成为低剂量CT成像技术的研究热点.近年来,在人工智...

关 键 词:深度学习  低剂量CT  伪影抑制  噪声建模
收稿时间:2021-05-20

Advances in Research on Low-dose CT Imaging Algorithm Based on Deep Learning
HAN Zefang,SHANGGUAN Hong,ZHANG Xiong,HAN Xinglong,GUI Zhiguo,CUI Xueying,ZHANG Pengcheng. Advances in Research on Low-dose CT Imaging Algorithm Based on Deep Learning[J]. Computerized Tomography Theory and Applications, 2022, 31(1): 117-134. DOI: 10.15953/j.1004-4140.2022.31.01.14
Authors:HAN Zefang  SHANGGUAN Hong  ZHANG Xiong  HAN Xinglong  GUI Zhiguo  CUI Xueying  ZHANG Pengcheng
Abstract:Computed tomography (CT) is widely used in clinical diagnosis because of its fast imaging speed and high resolution. However, higher doses of radiation will cause damages to human tissues and organs, while lower doses will lead to serious deterioration of imaging quality. In order to solve the above contradiction, researchers have focused on the low-dose CT imaging technology to study how to reduce the harm caused by radiation to the human body to the greatest extent under the condition of ensuring the imaging quality to meet the needs of clinical diagnosis. In recent years, deep learning has developed rapidly in the field of artificial intelligence, and has been widely used in image processing, pattern recognition, signal processing fields. Driven by big data, LDCT imaging algorithms based on deep learning have made great progress. This paper studies the development of low-dose CT imaging algorithms in recent years in terms of three aspects: the process of CT imaging, the noise modeling of low-dose CT, and the design of imaging algorithms. In particular, the imaging algorithms in the field of deep learning are systematically elaborated and analyzed. Finally, future developments in the field of LDCT image artifact suppression are also prospected. 
Keywords:
本文献已被 万方数据 等数据库收录!
点击此处可从《CT理论与应用研究》浏览原始摘要信息
点击此处可从《CT理论与应用研究》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号