首页 | 本学科首页   官方微博 | 高级检索  
     检索      

复杂环境下高分二号遥感影像的城市地表水体提取
引用本文:洪亮,黄雅君,杨昆,彭双云,许泉立.复杂环境下高分二号遥感影像的城市地表水体提取[J].遥感学报,2019,23(5):871-882.
作者姓名:洪亮  黄雅君  杨昆  彭双云  许泉立
作者单位:云南师范大学 旅游与地理科学学院, 昆明 650500;云南师范大学 西部资源环境地理信息技术教育部工程技术研究中心, 昆明 650500;云南师范大学 云南省地理空间信息技术工程技术研究中心, 昆明 650500;云南师范大学 云南省高校资源与环境遥感重点实验室, 昆明 650500,云南师范大学 旅游与地理科学学院, 昆明 650500;云南师范大学 西部资源环境地理信息技术教育部工程技术研究中心, 昆明 650500;云南师范大学 云南省地理空间信息技术工程技术研究中心, 昆明 650500;云南师范大学 云南省高校资源与环境遥感重点实验室, 昆明 650500,云南师范大学 西部资源环境地理信息技术教育部工程技术研究中心, 昆明 650500;云南师范大学 信息学院, 昆明 650500,云南师范大学 旅游与地理科学学院, 昆明 650500;云南师范大学 西部资源环境地理信息技术教育部工程技术研究中心, 昆明 650500;云南师范大学 云南省地理空间信息技术工程技术研究中心, 昆明 650500;云南师范大学 云南省高校资源与环境遥感重点实验室, 昆明 650500,云南师范大学 旅游与地理科学学院, 昆明 650500;云南师范大学 西部资源环境地理信息技术教育部工程技术研究中心, 昆明 650500;云南师范大学 云南省地理空间信息技术工程技术研究中心, 昆明 650500;云南师范大学 云南省高校资源与环境遥感重点实验室, 昆明 650500
基金项目:国家自然科学基金(编号:41661082,41861048,41201463,41561086,41461038);云南省自然科学基金(编号:2018FB082);国家社科基金重大项目(编号:16ZDA041)
摘    要:水体指数可以抑制背景噪声和提高地表水体的可分性,已经广泛用于地表水体提取。传统FCM聚类算法考虑了地物的不确定性,但没有顾及地物的邻域空间信息,对背景异质性比较敏感。针对传统FCM聚类算法的不足,提出一种可变邻域的区域FCM聚类算法。由于复杂环境下高分二号(GF-2)遥感影像的城市地表水体具有复杂异质背景和不确定性的特点,本文利用水体指数和区域FCM聚类算法的优点,提出一种整合水体指数和区域FCM的城市地表水体自动提取算法,该算法主要步骤包括:(1)去除影像阴影后计算归一化差分水体指数NDWI(Normalized Difference Water Index);(2)区域FCM聚类算法;(3)整合水体指数和区域FCM聚类的城市地表水体自动提取算法。最后采用两景GF-2高分辨率遥感影像(广州和武汉)进行实验,验证了该算法的有效性,并与经典地表水体提取算法进行对比分析。实验结果表明:该算法具有较高的水体提取精度,城市地表水体边界既具有较好的区域完整性又保持了局部细节,同时对城市地表水体复杂背景噪声具有较好的抑制作用,有效减少传统FCM聚类算法的"胡椒盐"现象。

关 键 词:遥感  高分二号  城市地表水体  归一化差分水体指数  模糊聚类  FCM算法  区域FCM算法
收稿时间:2018/2/7 0:00:00

Study on urban surface water extraction from heterogeneous environments using GF-2 remotely sensed images
HONG Liang,HUANG Yajun,YANG Kun,PENG Shuangyun and XU Quanli.Study on urban surface water extraction from heterogeneous environments using GF-2 remotely sensed images[J].Journal of Remote Sensing,2019,23(5):871-882.
Authors:HONG Liang  HUANG Yajun  YANG Kun  PENG Shuangyun and XU Quanli
Institution:Yunnan Normal University, School of Tourism and Geography, Kunming 650500, China;Yunnan Normal University, GIS Technology Research Center of Resource and Environment in Western China of Ministry of Education, Kunming 650500, China;Yunnan Normal University, Center for Geospatial Information Engineering and Technology of Yunnan Province, Kunming 650500, China;Yunnan Normal University, Key Laboratory of Resources and Environmental Remote Sensing for Universities in Yunnan, Kunming 650500, China,Yunnan Normal University, School of Tourism and Geography, Kunming 650500, China;Yunnan Normal University, GIS Technology Research Center of Resource and Environment in Western China of Ministry of Education, Kunming 650500, China;Yunnan Normal University, Center for Geospatial Information Engineering and Technology of Yunnan Province, Kunming 650500, China;Yunnan Normal University, Key Laboratory of Resources and Environmental Remote Sensing for Universities in Yunnan, Kunming 650500, China,Yunnan Normal University, GIS Technology Research Center of Resource and Environment in Western China of Ministry of Education, Kunming 650500, China;Yunnan Normal University, School of Information Science and Technology, Kunming 650500, China,Yunnan Normal University, School of Tourism and Geography, Kunming 650500, China;Yunnan Normal University, GIS Technology Research Center of Resource and Environment in Western China of Ministry of Education, Kunming 650500, China;Yunnan Normal University, Center for Geospatial Information Engineering and Technology of Yunnan Province, Kunming 650500, China;Yunnan Normal University, Key Laboratory of Resources and Environmental Remote Sensing for Universities in Yunnan, Kunming 650500, China and Yunnan Normal University, School of Tourism and Geography, Kunming 650500, China;Yunnan Normal University, GIS Technology Research Center of Resource and Environment in Western China of Ministry of Education, Kunming 650500, China;Yunnan Normal University, Center for Geospatial Information Engineering and Technology of Yunnan Province, Kunming 650500, China;Yunnan Normal University, Key Laboratory of Resources and Environmental Remote Sensing for Universities in Yunnan, Kunming 650500, China
Abstract:The water index can suppress background noise and increase the separability of surface water. Thus, it has been widely used for surface water extraction. Traditional FCM clustering algorithm considers the uncertainty of ground objects without neighborhood spatial information, which is sensitive to background heterogeneity. On the basis of the shortcomings of traditional FCM clustering algorithms, this study proposed a regional FCM clustering algorithm and applied it to extract city surface water in complex environment regions using GF-2 remote sensing imagery. The main steps of the method include (1)Calculating the normalized difference water index after the removal of shadows; (2) Presenting a regional FCM clustering algorithm;(3)Proposing the urban surface water automatic extraction algorithm by combining the water body index and the regional FCM clustering algorithm. Finally, the proposed method was carried out on two GF-2 high-resolution remote sensing image data located in Guangzhou and Wuhan. The experimental results showed that the proposed method has better accuracy and water boundary than state-of-the-art methods. The proposed method also retains regional integrity and local details of surface water objects while effectively inhibiting noise from urban surface water in the complex background, thereby reducing the "salt and pepper" phenomenon found in traditional FCM clustering algorithm.
Keywords:remote sensing  GF-2  urban surface water  normalized difference water index  Fuzzy clustering algorithm  FCM algorithm  region FCM clustering algorithm
本文献已被 CNKI 等数据库收录!
点击此处可从《遥感学报》浏览原始摘要信息
点击此处可从《遥感学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号