首页 | 本学科首页   官方微博 | 高级检索  
     

人工神经网络反演珠江口海域叶绿素浓度
引用本文:沈春燕,陈楚群,詹海刚. 人工神经网络反演珠江口海域叶绿素浓度[J]. 热带海洋学报, 2005, 24(6): 38-43
作者姓名:沈春燕  陈楚群  詹海刚
作者单位:中国科学院南海海洋研究所热带海洋环境动力学重点实验室,广东,广州,510301;中国科学院南海海洋研究所热带海洋环境动力学重点实验室,广东,广州,510301;中国科学院南海海洋研究所热带海洋环境动力学重点实验室,广东,广州,510301
基金项目:国家自然科学基金项目(40276049);国家973赤潮项目(2001CB409708);国家863自由探索项目(2002AA639130);国家863青年项目(2004AA639860)
摘    要:利用2003年1月、2004年1月在珠江口海域的叶绿素浓度和辐射同步实测资料,建立了反演珠江口海域叶绿素浓度的人工神经网络模型。应用该模型由SeaWiFS资料获取珠江口海域叶绿素浓度分布图,并与SeaBAM推荐的OC2和OC4这2种统计算法的反演结果进行比较,结果表明人工神经网络模型的反演效果明显优于统计算法。人工神经网络模型的均方根差是0.2899,可决系数是0.8848;而统计算法的均方根差大于0.5,可决系数小于0.6。

关 键 词:人工神经网络  二类海水  叶绿素  反演算法
文章编号:1009-5470(2005)06-0038-06
收稿时间:2004-11-11
修稿时间:2005-03-10

INVERSE OF CHLOROPHYLL CONCENTRATION IN ZHUJIANG RIVER ESTUARY USING ARTIFICAL NEURAL NETWORK
SHEN Chun-yan,CHEN Chu-qun,ZHAN Hai-gang. INVERSE OF CHLOROPHYLL CONCENTRATION IN ZHUJIANG RIVER ESTUARY USING ARTIFICAL NEURAL NETWORK[J]. Journal of Tropical Oceanography, 2005, 24(6): 38-43
Authors:SHEN Chun-yan  CHEN Chu-qun  ZHAN Hai-gang
Affiliation:Key Laboratory of Tropical Marine Environmental Dynamics, South China Sea Institute of Oceanology, CAS, Guangzhou 510301, China
Abstract:Based on the in situ chlorophyll concentration and radiance data observed in Jan.2003 and Jan.2004 in the Zhujiang River estuary,an artificial neural network(ANN) algorithm was developed to retrieve the chlorophyll concentration in the Zhujiang River estuary from the SeaWiFS image of October 31,1998,and the results were compared with those determined from the statistical algorithms OC2 and OC4.It was shown that the retrieve effect of the neural network outperformed those of the statistical algorithms.The root-mean-square error(RMS) and relation square(RSq) of ANN were 0.289 9 and 0.884 8,respectively,while the RMS of the statistical algorithms was over 0.5 and the RSq below 0.6.
Keywords:artificial neural network   case 2 water   chlorophyll   inversive algorithm
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号