首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Atmospheric Concentrations and Phase Partitioning of Polycyclic Aromatic Hydrocarbons in Izmir,Turkey
Authors:Eylem Demircioglu  Aysun Sofuoglu  Mustafa Odabasi
Institution:1. Faculty of Engineering, Department of Environmental Engineering, Dokuz Eylul University, Izmir, Turkey;2. Faculty of Engineering, Department of Chemical Engineering, Izmir Institute of Technology, Gulbahce‐Urla, Turkey
Abstract:Ambient air polycyclic aromatic hydrocarbon (PAH) samples were collected at a suburban (n = 63) and at an urban site (n = 14) in Izmir, Turkey. Average gas‐phase total PAH (∑14PAH) concentrations were 23.5 ng m?3 for suburban and 109.7 ng m?3 for urban sites while average particle‐phase total PAH concentrations were 12.3 and 34.5 ng m?3 for suburban and urban sites, respectively. Higher ambient PAH concentrations were measured in the gas‐phase and ∑14PAH concentrations were dominated by lower molecular weight PAHs. Multiple linear regression analysis indicated that the meteorological parameters were effective on ambient PAH concentrations. Emission sources of particle‐phase PAHs were investigated using a diagnostic plot of fluorene (FLN)/(fluorine + pyrene; PY) versus indeno1,2,3‐cd]PY/(indeno1,2,3‐cd]PY + benzog,h,i]perylene) and several diagnostic ratios. These approaches have indicated that traffic emissions (petroleum combustion) were the dominant PAH sources at both sites for summer and winter seasons. Experimental gas–particle partition coefficients (KP) were compared to the predictions of octanol–air (KOA) and soot–air (KSA) partition coefficient models. The correlations between experimental and modeled KP values were significant (r2 = 0.79 and 0.94 for suburban and urban sites, respectively, p < 0.01). Octanol‐based absorptive partitioning model predicted lower partition coefficients especially for relatively volatile PAHs. However, overall there was a relatively good agreement between the measured KP and soot‐based model predictions.
Keywords:Gas/particle partitioning  Octanol–  air‐based absorption model  Polycyclic aromatic hydrocarbon  Soot–  air‐based model
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号