首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Geochemistry and isotope (Sr, Nd, O) study of Al–Mg granulites from the In Ouzzal Archaean block (Hoggar, Algeria)
Authors:J BERNARD-GRIFFITHS  S FOURCADE  J-R KIENAST  J-J PEUCAT  F MARTINEAU  A RAHMANI
Institution:Géosciences Rennes, CNRS UPR 4661, Universitéde Rennes, 35042 Rennes Cedex, France;Laboratoire de Pétrologie, Universitéde Paris VI-VII, URA-CNRS 736, Tour 26–0, 4 Place Jussieu, 75252, Paris, France
Abstract:The In Ouzzal Al–Mg granulites are found within sedimentary units deposited after 2.7 Ga, the whole association being metamorphosed under extreme temperature conditions (c. 1000 °C) at 2 Ga. The Al–Mg granulites are interlayered with other metasediments, including metapelites, quartzites and magnetite-bearing quartzites, forsterite-spinel marbles, and a few meta-igneous rocks (mainly pyroxenites). They do not occur at a specific position in the sedimentary suite, and they do not reflect any particular structural control. The major and trace element compositions of Al–Mg granulites (especially the high Cr, Ni, Co contents) show that their peculiar ‘refractory’ chemistry is more compatible with premetamorphic sedimentary characteristics rather than with metasomatic, metamorphic or partial melting processes. Sedimentary admixtures of a common mature detrital component coming from the weathering of the local acidic igneous crustal protoliths (normal pelitic component) with an extremely immature component derived from reworking of basic/ultrabasic lithologies (Al–Mg–Cr–Co–Ni–rich chloritic component) is consistent with the geochemistry of such rocks. As in other instances, the quartz-garnet oxygen isotopic thermometer here records an apparent temperature close to the peak metamorphism (c. 1000 °C). Although the persistence of pre-existing δ18O variations on a small scale during the metamorphism does not support a major pervasive fluid flow during metamorphism, it does not rule out the presence of syn- to post-metamorphic CO2. The low δ18O (c.+ 5 to + 6‰) of the most typical Al–Mg granulites indicate that the ‘chloritic component’ in these rocks was derived from hydrothermally altered mafic/ultramafic protoliths rather than dominantly from palaeosols. It is suggested that the presence of such Al–Mg–Cr–Co–Ni–rich sediments is indirect evidence for the presence of greenstone belts in the local crust of the In Ouzzal at 2.6–2.7 Ga.
Keywords:Al–Mg granulites  Archaean  Hoggar  isotope geochemistry  metasediments
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号