首页 | 本学科首页   官方微博 | 高级检索  
     

基于地震属性的煤层厚度预测模型及其应用
引用本文:孟召平, 郭彦省, 王赟, 潘结南, 芦俊. 基于地震属性的煤层厚度预测模型及其应用[J]. 地球物理学报, 2006, 49(2): 512-517,
作者姓名:孟召平  郭彦省  王赟  潘结南  芦俊
作者单位:1 中国矿业大学(北京)资源与地球科学系, 北京 100083 2 中国科学院地质与地球物理研究所, 北京100029
基金项目:全国优秀博士学位论文作者专项资金(200247),高等学校博士学科点专项科研基金(20050290009)、教育部留学回国人员科研启动基金和国家自然科学基金(40172059)资助.
摘    要:
地震属性技术在岩性和构造解释等方面得到了越来越广泛的应用,特别是在煤、油气资源勘探中具有重要的作用.基于淮南矿区谢桥1区13-1煤层地震勘探资料,提取了28种地震属性数据;通过地震属性的分析,优选出平均峰值振幅、振幅的峰态、最大绝对振幅、瞬时频率斜率等4种地震属性作为煤层厚度预测模型基本参数,结合已知钻孔资料,利用多元多项式回归以及BP人工神经网络方法,求出了各属性与煤厚之间的多元多项式回归模型及人工神经网络模型,并对模型进行了误差分析和应用结果对比分析,反映出人工神经网络模型在煤厚预测中具有好的应用效果.

关 键 词:地震属性   煤层厚度   多元统计模型   人工神经网络模型
文章编号:0001-5733(2006)02-0512-06
收稿时间:2005-02-22
修稿时间:2005-02-222005-10-05

Prediction models of coal thickness based on seismic attributions and their applications
MENG Zhao-Ping, GUO Yan-Sheng, WANG Yun, PAN Jie-Nan, LU Jun. Prediction models of coal thickness based on seismic attributions and their applications[J]. Chinese Journal of Geophysics (in Chinese), 2006, 49(2): 512-517,
Authors:MENG Zhao-Ping  GUO Yan-Sheng  WANG Yun  PAN Jie-Nan  LU Jun
Affiliation:1 Department of Resource and Geoscience of China University of Mining and Technology, Beijing 100083, China 2 Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
Abstract:
As a technology used widely in lithology and structural interpretation, seismic attribute technology has been playing an important role in coal and oil exploration. Based on 3_D seismic exploration data of coal seam 13-1 in the Xieqiao colliery, Huainan coal field of China, 28 seismic attributes are extracted. Through analysis of seismic attributes, four usable seismic attributes, such as average-peak-amplitude, kurtosis-in-amplitude, maximum-absolute-amplitude and slope rate of instantaneous-frequency, are selected as the basic analysis parameters of prediction models of coal thickness. Combined with the real drill data, the prediction models between coal thickness and multi attributes are established by using analytical methods of multivariant polynomial regression and BP neural networks(BPNN), and error analysis of predicting coal thickness is carried out. From the comparison of prediction results of coal thickness of coal seam 13-1 in the Xieqiao colliery, Huainan coal field of China by using these two models, it is concluded that the BPNN model has higher accuracy in predicting coal thickness.
Keywords:Seismic attributes   Coal thickness   Multivariate statistic model   BP neural network model
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《地球物理学报》浏览原始摘要信息
点击此处可从《地球物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号