首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Inferred Palaeoproterozoic arc rifting along a consuming plate margin: insights from the stratigraphy,volcanology and geochemistry of the Kangerluluk sequence,southeast Greenland
Authors:W Mueller  J Dostal  H Stendal
Institution:1.Sciences de la Terre, Université du Québec à Chicoutimi, Québec, Canada G7H 2B1,;2.Department of Geology, Saint Mary's University, Halifax, Nova Scotia, Canada B3H 3C3,;3.Geological Survey of Denmark and Greenland (GEUS), Thoravej 8, 2400 Copenhagen NV, Denmark,
Abstract:The 200- to 300-m-thick volcano-sedimentary sequence in the Kangerluluk Fjord, associated with penecontemporaneous and late-tectonic dykes, as well as a synvolcanic plutonic suite, represents an integral component of the Palaeoproterozoic Ketilidian Mobile Belt, south Greenland. The ca. 1808-Ma Kangerluluk supracrustal sequence contains four distinct mappable lithofacies: (a) a conglomerate-sandstone lithofacies; (b) a pyroclastic lithofacies; (c) a volcanic lithofacies; and (d) a peperite lithofacies. The volcanic lithofacies, up to 200 m thick, is characterized by shallow-water subaqueous brecciated and pillowed flows. Flows are either (a) feldspar-phyric, or (b) feldspar-pyroxene-phyric, with 0.2- to 3-cm-size plagioclase and 0.2- to 3-cm-size pyroxene that constitute between 20 and 30% (locally up to 50%) of the flows. Mafic dykes intruded wet unconsolidated pyroclastic lithofacies, resulting in the formation of peperites. Geochemically, the volcanic and pyroclastic units represent a distinct tholeiitic magmatic suite enriched in incompatible trace elements including Th, La, Yb, Zr and Nb, and exhibiting (La/Yb)n~10. The plutonic suite and associated dykes display a calc-alkaline trend with enriched LREE and unfractionated flat HREE patterns, Lan ranging between 50 and 100, (La/Yb)n ratios between 8 and 22, and negative Nb and Ti anomalies on the mantle-normalized, incompatible multi-element patterns. The pillowed flows lie in the continental flood basalt field on the Y-Nb-Zr discrimination diagram, and display a Nb anomaly and K2O-enrichment that collectively suggest a crustal component and/or a subduction-modified mantle source. The geology, stratigraphy of the Kangerluluk area and geochemistry can be used to infer a change in magma genesis from arc to rift volcanism. The 1850- to 1800-Ma calc-alkaline Julianehåb batholith represents a magmatic arc that rifted during crustal extension, allowing for the ascent of mantle-derived mafic magma. The geochemistry of the mafic volcanic flows, synvolcanic dykes and pyroclastic deposits favours a crustal component in magma genesis and offers new insights into the tectonic evolution of the Ketilidian Mobile Belt.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号